Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317373335> ?p ?o ?g. }
- W4317373335 endingPage "475" @default.
- W4317373335 startingPage "468" @default.
- W4317373335 abstract "Abstract Background and Aim Severe acute pancreatitis (SAP) in patients progresses rapidly and can cause multiple organ failures associated with high mortality. We aimed to train a machine learning (ML) model and establish a nomogram that could identify SAP, early in the course of acute pancreatitis (AP). Methods In this retrospective study, 631 patients with AP were enrolled in the training cohort. For predicting SAP early, five supervised ML models were employed, such as random forest (RF), K ‐nearest neighbors (KNN), and naive Bayes (NB), which were evaluated by accuracy (ACC) and the areas under the receiver operating characteristic curve (AUC). The nomogram was established, and the predictive ability was assessed by the calibration curve and AUC. They were externally validated by an independent cohort of 109 patients with AP. Results In the training cohort, the AUC of RF, KNN, and NB models were 0.969, 0.954, and 0.951, respectively, while the AUC of the Bedside Index for Severity in Acute Pancreatitis (BISAP), Ranson and Glasgow scores were only 0.796, 0.847, and 0.837, respectively. In the validation cohort, the RF model also showed the highest AUC, which was 0.961. The AUC for the nomogram was 0.888 and 0.955 in the training and validation cohort, respectively. Conclusions Our findings suggested that the RF model exhibited the best predictive performance, and the nomogram provided a visual scoring model for clinical practice. Our models may serve as practical tools for facilitating personalized treatment options and improving clinical outcomes through pre‐treatment stratification of patients with AP." @default.
- W4317373335 created "2023-01-19" @default.
- W4317373335 creator A5019288987 @default.
- W4317373335 creator A5025671324 @default.
- W4317373335 creator A5027955660 @default.
- W4317373335 creator A5028309511 @default.
- W4317373335 creator A5035482887 @default.
- W4317373335 creator A5037903078 @default.
- W4317373335 creator A5040733676 @default.
- W4317373335 creator A5041712189 @default.
- W4317373335 creator A5050448267 @default.
- W4317373335 creator A5060646410 @default.
- W4317373335 creator A5076623319 @default.
- W4317373335 creator A5082045074 @default.
- W4317373335 creator A5088316353 @default.
- W4317373335 creator A5089866702 @default.
- W4317373335 date "2023-01-27" @default.
- W4317373335 modified "2023-10-18" @default.
- W4317373335 title "Development and evaluation of machine learning models and nomogram for the prediction of severe acute pancreatitis" @default.
- W4317373335 cites W2051404519 @default.
- W4317373335 cites W2145758369 @default.
- W4317373335 cites W2344022952 @default.
- W4317373335 cites W2564201733 @default.
- W4317373335 cites W2745718158 @default.
- W4317373335 cites W2746722496 @default.
- W4317373335 cites W2749260185 @default.
- W4317373335 cites W2768192727 @default.
- W4317373335 cites W2782248232 @default.
- W4317373335 cites W2792332216 @default.
- W4317373335 cites W2811115492 @default.
- W4317373335 cites W2911964244 @default.
- W4317373335 cites W2915036087 @default.
- W4317373335 cites W2938809977 @default.
- W4317373335 cites W2956047140 @default.
- W4317373335 cites W2963181363 @default.
- W4317373335 cites W2967735266 @default.
- W4317373335 cites W2969301077 @default.
- W4317373335 cites W2973871066 @default.
- W4317373335 cites W2996957145 @default.
- W4317373335 cites W3012687466 @default.
- W4317373335 cites W3033159036 @default.
- W4317373335 cites W3088096263 @default.
- W4317373335 cites W3139263945 @default.
- W4317373335 cites W3163221394 @default.
- W4317373335 cites W3211527358 @default.
- W4317373335 cites W4211258447 @default.
- W4317373335 cites W4220702901 @default.
- W4317373335 cites W4249270402 @default.
- W4317373335 cites W4303983058 @default.
- W4317373335 doi "https://doi.org/10.1111/jgh.16125" @default.
- W4317373335 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36653317" @default.
- W4317373335 hasPublicationYear "2023" @default.
- W4317373335 type Work @default.
- W4317373335 citedByCount "2" @default.
- W4317373335 countsByYear W43173733352023 @default.
- W4317373335 crossrefType "journal-article" @default.
- W4317373335 hasAuthorship W4317373335A5019288987 @default.
- W4317373335 hasAuthorship W4317373335A5025671324 @default.
- W4317373335 hasAuthorship W4317373335A5027955660 @default.
- W4317373335 hasAuthorship W4317373335A5028309511 @default.
- W4317373335 hasAuthorship W4317373335A5035482887 @default.
- W4317373335 hasAuthorship W4317373335A5037903078 @default.
- W4317373335 hasAuthorship W4317373335A5040733676 @default.
- W4317373335 hasAuthorship W4317373335A5041712189 @default.
- W4317373335 hasAuthorship W4317373335A5050448267 @default.
- W4317373335 hasAuthorship W4317373335A5060646410 @default.
- W4317373335 hasAuthorship W4317373335A5076623319 @default.
- W4317373335 hasAuthorship W4317373335A5082045074 @default.
- W4317373335 hasAuthorship W4317373335A5088316353 @default.
- W4317373335 hasAuthorship W4317373335A5089866702 @default.
- W4317373335 hasConcept C112705442 @default.
- W4317373335 hasConcept C119857082 @default.
- W4317373335 hasConcept C126322002 @default.
- W4317373335 hasConcept C154945302 @default.
- W4317373335 hasConcept C167135981 @default.
- W4317373335 hasConcept C198433322 @default.
- W4317373335 hasConcept C2775967933 @default.
- W4317373335 hasConcept C2776670229 @default.
- W4317373335 hasConcept C3020225094 @default.
- W4317373335 hasConcept C34626388 @default.
- W4317373335 hasConcept C41008148 @default.
- W4317373335 hasConcept C58471807 @default.
- W4317373335 hasConcept C71924100 @default.
- W4317373335 hasConcept C72563966 @default.
- W4317373335 hasConcept C76318530 @default.
- W4317373335 hasConceptScore W4317373335C112705442 @default.
- W4317373335 hasConceptScore W4317373335C119857082 @default.
- W4317373335 hasConceptScore W4317373335C126322002 @default.
- W4317373335 hasConceptScore W4317373335C154945302 @default.
- W4317373335 hasConceptScore W4317373335C167135981 @default.
- W4317373335 hasConceptScore W4317373335C198433322 @default.
- W4317373335 hasConceptScore W4317373335C2775967933 @default.
- W4317373335 hasConceptScore W4317373335C2776670229 @default.
- W4317373335 hasConceptScore W4317373335C3020225094 @default.
- W4317373335 hasConceptScore W4317373335C34626388 @default.
- W4317373335 hasConceptScore W4317373335C41008148 @default.
- W4317373335 hasConceptScore W4317373335C58471807 @default.
- W4317373335 hasConceptScore W4317373335C71924100 @default.