Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317381005> ?p ?o ?g. }
- W4317381005 endingPage "128490" @default.
- W4317381005 startingPage "128490" @default.
- W4317381005 abstract "Predicting the future structure of air transport networks is important for several stakeholders in terms of e.g., access to markets, prospects for economic integration and development of regions. Link and edge weight prediction aims to foretell whether two airports will be connected by a direct flight in a future stage of the development of a network and the frequency with which services will be provided. This work assesses the capacity of popular similarity-based algorithms to predict network evolution in air transport. It also proposes a supervised recurrent neural network-based learning framework (RNN) for link prediction. It draws on a set of topological, temporal and content-based features. Experimental results from network data that maps the European Air Transport Network in the period between 2010 and 2019 show that similarity-based algorithms are not able to predict future network stages well. Their performance in predicting newly emerging links remains below expectations formulated in the earlier link prediction literature. The proposed RNN framework outperforms traditional similarity algorithms by a substantial margin. However, the results suggest that link and edge weight prediction remain challenging in sparse air transport networks. Predictive performance must be optimised even further before forecasts can be used to inform concrete policy decisions." @default.
- W4317381005 created "2023-01-19" @default.
- W4317381005 creator A5028846026 @default.
- W4317381005 date "2023-03-01" @default.
- W4317381005 modified "2023-09-27" @default.
- W4317381005 title "Link and edge weight prediction in air transport networks — An RNN approach" @default.
- W4317381005 cites W1135748203 @default.
- W4317381005 cites W1678356000 @default.
- W4317381005 cites W1698089153 @default.
- W4317381005 cites W1966716734 @default.
- W4317381005 cites W1967531152 @default.
- W4317381005 cites W1970165121 @default.
- W4317381005 cites W1977382765 @default.
- W4317381005 cites W1981077343 @default.
- W4317381005 cites W2004210302 @default.
- W4317381005 cites W2007444087 @default.
- W4317381005 cites W2008620264 @default.
- W4317381005 cites W2009130514 @default.
- W4317381005 cites W2018045523 @default.
- W4317381005 cites W2025726857 @default.
- W4317381005 cites W2026417691 @default.
- W4317381005 cites W2031063730 @default.
- W4317381005 cites W2032553509 @default.
- W4317381005 cites W2037705937 @default.
- W4317381005 cites W2039688703 @default.
- W4317381005 cites W2041976364 @default.
- W4317381005 cites W2042364200 @default.
- W4317381005 cites W2058325810 @default.
- W4317381005 cites W2064675550 @default.
- W4317381005 cites W2077798854 @default.
- W4317381005 cites W2091019377 @default.
- W4317381005 cites W2131681506 @default.
- W4317381005 cites W2136647665 @default.
- W4317381005 cites W2137266317 @default.
- W4317381005 cites W2137959503 @default.
- W4317381005 cites W2149055390 @default.
- W4317381005 cites W2152998434 @default.
- W4317381005 cites W2153667436 @default.
- W4317381005 cites W2154454189 @default.
- W4317381005 cites W2159697746 @default.
- W4317381005 cites W2167397789 @default.
- W4317381005 cites W2267995638 @default.
- W4317381005 cites W2290174960 @default.
- W4317381005 cites W2525856509 @default.
- W4317381005 cites W2532488759 @default.
- W4317381005 cites W2559708824 @default.
- W4317381005 cites W2562216710 @default.
- W4317381005 cites W256557539 @default.
- W4317381005 cites W2585835859 @default.
- W4317381005 cites W2605455378 @default.
- W4317381005 cites W2768314226 @default.
- W4317381005 cites W2773359160 @default.
- W4317381005 cites W2774466599 @default.
- W4317381005 cites W2783771729 @default.
- W4317381005 cites W2789443491 @default.
- W4317381005 cites W2803728581 @default.
- W4317381005 cites W2804138311 @default.
- W4317381005 cites W2911964244 @default.
- W4317381005 cites W2914912562 @default.
- W4317381005 cites W2944851425 @default.
- W4317381005 cites W2945827377 @default.
- W4317381005 cites W2963459295 @default.
- W4317381005 cites W2969194307 @default.
- W4317381005 cites W2970191986 @default.
- W4317381005 cites W2981359633 @default.
- W4317381005 cites W2996343685 @default.
- W4317381005 cites W2998878641 @default.
- W4317381005 cites W3004621088 @default.
- W4317381005 cites W3007004797 @default.
- W4317381005 cites W3016055108 @default.
- W4317381005 cites W3033572365 @default.
- W4317381005 cites W3098818882 @default.
- W4317381005 cites W3101427803 @default.
- W4317381005 cites W3117740706 @default.
- W4317381005 cites W3122868618 @default.
- W4317381005 cites W3134436766 @default.
- W4317381005 cites W3141960794 @default.
- W4317381005 cites W3174475677 @default.
- W4317381005 cites W4283206413 @default.
- W4317381005 doi "https://doi.org/10.1016/j.physa.2023.128490" @default.
- W4317381005 hasPublicationYear "2023" @default.
- W4317381005 type Work @default.
- W4317381005 citedByCount "1" @default.
- W4317381005 countsByYear W43173810052023 @default.
- W4317381005 crossrefType "journal-article" @default.
- W4317381005 hasAuthorship W4317381005A5028846026 @default.
- W4317381005 hasConcept C103278499 @default.
- W4317381005 hasConcept C115961682 @default.
- W4317381005 hasConcept C119857082 @default.
- W4317381005 hasConcept C124101348 @default.
- W4317381005 hasConcept C127413603 @default.
- W4317381005 hasConcept C147168706 @default.
- W4317381005 hasConcept C154945302 @default.
- W4317381005 hasConcept C162307627 @default.
- W4317381005 hasConcept C177264268 @default.
- W4317381005 hasConcept C199360897 @default.
- W4317381005 hasConcept C22212356 @default.
- W4317381005 hasConcept C2778753846 @default.