Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317382077> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4317382077 abstract "Liver segmentation from abdominal Com-puted Tomography (CT) images aims to separate the liver from other organs. It plays an important role in determining liver function and researching liver diseases. However, manual segmentation is time-consuming and labor-intensive for radiologists. The segmentation task is mitigated with emerging deep learning algorithms, and the liver region is effectively automatically extracted. In addition, images need to be appropriately processed before being used in learning algorithms. This study examines the effects of denoising techniques like 3D Median and 3D Bilateral filters on medical image segmentation tasks performed by U-Net and Dense-UNet algorithms. First, we apply one of two denoising techniques - 3D Median filter and 3D Bilateral filter - to the original CT images. Meanwhile, the manual liver masks with ten-level are converted to binary masks. Next, the dimension of each denoised CT slice and binary mask are normalized from 512 × 512 to 256 × 256. Finally, we conduct the model training based on U-Net and Dense-UNet architectures to perform the segmentation on denoised CT slices. The experimental results show that using a denoising technique such as Bilateral can benefit accuracy and inference time in liver segmentation tasks on CT images." @default.
- W4317382077 created "2023-01-19" @default.
- W4317382077 creator A5041955272 @default.
- W4317382077 creator A5048414571 @default.
- W4317382077 creator A5060641104 @default.
- W4317382077 creator A5073842842 @default.
- W4317382077 date "2022-12-20" @default.
- W4317382077 modified "2023-10-16" @default.
- W4317382077 title "Denoising with Median and Bilateral on CT images for Liver segmentation" @default.
- W4317382077 cites W2011301426 @default.
- W4317382077 cites W2099244020 @default.
- W4317382077 cites W2142317660 @default.
- W4317382077 cites W2899279931 @default.
- W4317382077 cites W2913637767 @default.
- W4317382077 cites W2964227007 @default.
- W4317382077 cites W2991139962 @default.
- W4317382077 cites W3030515889 @default.
- W4317382077 cites W3104524218 @default.
- W4317382077 cites W3117954678 @default.
- W4317382077 cites W3134631491 @default.
- W4317382077 cites W3157380040 @default.
- W4317382077 cites W3176124424 @default.
- W4317382077 cites W3178880621 @default.
- W4317382077 cites W3197187552 @default.
- W4317382077 cites W4200395672 @default.
- W4317382077 cites W4211086604 @default.
- W4317382077 cites W4290466595 @default.
- W4317382077 cites W4292387139 @default.
- W4317382077 doi "https://doi.org/10.1109/rivf55975.2022.10013803" @default.
- W4317382077 hasPublicationYear "2022" @default.
- W4317382077 type Work @default.
- W4317382077 citedByCount "0" @default.
- W4317382077 crossrefType "proceedings-article" @default.
- W4317382077 hasAuthorship W4317382077A5041955272 @default.
- W4317382077 hasAuthorship W4317382077A5048414571 @default.
- W4317382077 hasAuthorship W4317382077A5060641104 @default.
- W4317382077 hasAuthorship W4317382077A5073842842 @default.
- W4317382077 hasConcept C106131492 @default.
- W4317382077 hasConcept C115961682 @default.
- W4317382077 hasConcept C124504099 @default.
- W4317382077 hasConcept C153180895 @default.
- W4317382077 hasConcept C154945302 @default.
- W4317382077 hasConcept C156140930 @default.
- W4317382077 hasConcept C163294075 @default.
- W4317382077 hasConcept C2776214188 @default.
- W4317382077 hasConcept C31972630 @default.
- W4317382077 hasConcept C41008148 @default.
- W4317382077 hasConcept C89600930 @default.
- W4317382077 hasConcept C99498987 @default.
- W4317382077 hasConceptScore W4317382077C106131492 @default.
- W4317382077 hasConceptScore W4317382077C115961682 @default.
- W4317382077 hasConceptScore W4317382077C124504099 @default.
- W4317382077 hasConceptScore W4317382077C153180895 @default.
- W4317382077 hasConceptScore W4317382077C154945302 @default.
- W4317382077 hasConceptScore W4317382077C156140930 @default.
- W4317382077 hasConceptScore W4317382077C163294075 @default.
- W4317382077 hasConceptScore W4317382077C2776214188 @default.
- W4317382077 hasConceptScore W4317382077C31972630 @default.
- W4317382077 hasConceptScore W4317382077C41008148 @default.
- W4317382077 hasConceptScore W4317382077C89600930 @default.
- W4317382077 hasConceptScore W4317382077C99498987 @default.
- W4317382077 hasLocation W43173820771 @default.
- W4317382077 hasOpenAccess W4317382077 @default.
- W4317382077 hasPrimaryLocation W43173820771 @default.
- W4317382077 hasRelatedWork W1669643531 @default.
- W4317382077 hasRelatedWork W1982826852 @default.
- W4317382077 hasRelatedWork W2005437358 @default.
- W4317382077 hasRelatedWork W2008656436 @default.
- W4317382077 hasRelatedWork W2023558673 @default.
- W4317382077 hasRelatedWork W2110230079 @default.
- W4317382077 hasRelatedWork W2134924024 @default.
- W4317382077 hasRelatedWork W2517104666 @default.
- W4317382077 hasRelatedWork W2613186388 @default.
- W4317382077 hasRelatedWork W2810018092 @default.
- W4317382077 isParatext "false" @default.
- W4317382077 isRetracted "false" @default.
- W4317382077 workType "article" @default.