Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317382452> ?p ?o ?g. }
- W4317382452 abstract "In this paper, we present an approach for COVID-19 identification from chest X-ray images by using high-resolution neural networks. These networks allow to connect high-to-low convolution streams in parallel. They can maintain high-resolution representations and generate different resolutions throughout the whole process. The high-resolution based models have shown the superior performance in several applications. The experiments were evaluated on a collection of three data sources containing 24,786 lung X-ray images, which were categorized into three classes including covid pneumonia, non-pneumonia, and viral pneumonia. The proposed approach can attain the overall accuracy of 98.2% and 97.56% for the training and testing set, respectively. The accuracy for each class is 99.37%, 94.83%, and 97.27%, respectively, for non-pneumonia, covid-pneumonia, and viral-pneumonia." @default.
- W4317382452 created "2023-01-19" @default.
- W4317382452 creator A5005333711 @default.
- W4317382452 creator A5048415094 @default.
- W4317382452 creator A5085350120 @default.
- W4317382452 date "2022-12-20" @default.
- W4317382452 modified "2023-09-29" @default.
- W4317382452 title "An Approach for COVID-19 Identification from Chest X-ray Images Using High-Resolution Networks" @default.
- W4317382452 cites W1504916455 @default.
- W4317382452 cites W1948745668 @default.
- W4317382452 cites W1967986697 @default.
- W4317382452 cites W2057536936 @default.
- W4317382452 cites W2097117768 @default.
- W4317382452 cites W2158012176 @default.
- W4317382452 cites W2341106171 @default.
- W4317382452 cites W2618530766 @default.
- W4317382452 cites W2794129379 @default.
- W4317382452 cites W2945822762 @default.
- W4317382452 cites W3010278110 @default.
- W4317382452 cites W3010604545 @default.
- W4317382452 cites W3014361272 @default.
- W4317382452 cites W3014641072 @default.
- W4317382452 cites W3033616466 @default.
- W4317382452 cites W3039563973 @default.
- W4317382452 cites W3042070269 @default.
- W4317382452 cites W3162351260 @default.
- W4317382452 cites W4300424419 @default.
- W4317382452 cites W49823667 @default.
- W4317382452 cites W912612766 @default.
- W4317382452 doi "https://doi.org/10.1109/rivf55975.2022.10013838" @default.
- W4317382452 hasPublicationYear "2022" @default.
- W4317382452 type Work @default.
- W4317382452 citedByCount "0" @default.
- W4317382452 crossrefType "proceedings-article" @default.
- W4317382452 hasAuthorship W4317382452A5005333711 @default.
- W4317382452 hasAuthorship W4317382452A5048415094 @default.
- W4317382452 hasAuthorship W4317382452A5085350120 @default.
- W4317382452 hasConcept C111919701 @default.
- W4317382452 hasConcept C116834253 @default.
- W4317382452 hasConcept C126322002 @default.
- W4317382452 hasConcept C127313418 @default.
- W4317382452 hasConcept C138268822 @default.
- W4317382452 hasConcept C142724271 @default.
- W4317382452 hasConcept C153180895 @default.
- W4317382452 hasConcept C154945302 @default.
- W4317382452 hasConcept C177264268 @default.
- W4317382452 hasConcept C199360897 @default.
- W4317382452 hasConcept C205372480 @default.
- W4317382452 hasConcept C2777914695 @default.
- W4317382452 hasConcept C2778158872 @default.
- W4317382452 hasConcept C2779134260 @default.
- W4317382452 hasConcept C3007834351 @default.
- W4317382452 hasConcept C3008058167 @default.
- W4317382452 hasConcept C3020199158 @default.
- W4317382452 hasConcept C41008148 @default.
- W4317382452 hasConcept C45347329 @default.
- W4317382452 hasConcept C50644808 @default.
- W4317382452 hasConcept C524204448 @default.
- W4317382452 hasConcept C58489278 @default.
- W4317382452 hasConcept C59822182 @default.
- W4317382452 hasConcept C62649853 @default.
- W4317382452 hasConcept C71924100 @default.
- W4317382452 hasConcept C81363708 @default.
- W4317382452 hasConcept C86803240 @default.
- W4317382452 hasConcept C98045186 @default.
- W4317382452 hasConceptScore W4317382452C111919701 @default.
- W4317382452 hasConceptScore W4317382452C116834253 @default.
- W4317382452 hasConceptScore W4317382452C126322002 @default.
- W4317382452 hasConceptScore W4317382452C127313418 @default.
- W4317382452 hasConceptScore W4317382452C138268822 @default.
- W4317382452 hasConceptScore W4317382452C142724271 @default.
- W4317382452 hasConceptScore W4317382452C153180895 @default.
- W4317382452 hasConceptScore W4317382452C154945302 @default.
- W4317382452 hasConceptScore W4317382452C177264268 @default.
- W4317382452 hasConceptScore W4317382452C199360897 @default.
- W4317382452 hasConceptScore W4317382452C205372480 @default.
- W4317382452 hasConceptScore W4317382452C2777914695 @default.
- W4317382452 hasConceptScore W4317382452C2778158872 @default.
- W4317382452 hasConceptScore W4317382452C2779134260 @default.
- W4317382452 hasConceptScore W4317382452C3007834351 @default.
- W4317382452 hasConceptScore W4317382452C3008058167 @default.
- W4317382452 hasConceptScore W4317382452C3020199158 @default.
- W4317382452 hasConceptScore W4317382452C41008148 @default.
- W4317382452 hasConceptScore W4317382452C45347329 @default.
- W4317382452 hasConceptScore W4317382452C50644808 @default.
- W4317382452 hasConceptScore W4317382452C524204448 @default.
- W4317382452 hasConceptScore W4317382452C58489278 @default.
- W4317382452 hasConceptScore W4317382452C59822182 @default.
- W4317382452 hasConceptScore W4317382452C62649853 @default.
- W4317382452 hasConceptScore W4317382452C71924100 @default.
- W4317382452 hasConceptScore W4317382452C81363708 @default.
- W4317382452 hasConceptScore W4317382452C86803240 @default.
- W4317382452 hasConceptScore W4317382452C98045186 @default.
- W4317382452 hasLocation W43173824521 @default.
- W4317382452 hasOpenAccess W4317382452 @default.
- W4317382452 hasPrimaryLocation W43173824521 @default.
- W4317382452 hasRelatedWork W3003901880 @default.
- W4317382452 hasRelatedWork W3004511262 @default.
- W4317382452 hasRelatedWork W3008700721 @default.
- W4317382452 hasRelatedWork W3012050440 @default.