Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317382684> ?p ?o ?g. }
- W4317382684 abstract "Abstract China implemented a strict lockdown policy to prevent the spread of COVID-19 in the worst-affected regions, including Wuhan and Shanghai. This study aims to investigate impact of these lockdowns on air quality index (AQI) using a deep learning framework. In addition to historical pollutant concentrations and meteorological factors, we incorporate social and spatio-temporal influences in the framework. In particular, spatial autocorrelation (SAC), which combines temporal autocorrelation with spatial correlation, is adopted to reflect the influence of neighbouring cities and historical data. Our deep learning analysis obtained the estimates of the lockdown effects as − 25.88 in Wuhan and − 20.47 in Shanghai. The corresponding prediction errors are reduced by about 47% for Wuhan and by 67% for Shanghai, which enables much more reliable AQI forecasts for both cities." @default.
- W4317382684 created "2023-01-19" @default.
- W4317382684 creator A5044575556 @default.
- W4317382684 creator A5066433321 @default.
- W4317382684 creator A5073924559 @default.
- W4317382684 creator A5080181112 @default.
- W4317382684 creator A5090789379 @default.
- W4317382684 date "2023-01-18" @default.
- W4317382684 modified "2023-10-17" @default.
- W4317382684 title "A hybrid deep learning framework for air quality prediction with spatial autocorrelation during the COVID-19 pandemic" @default.
- W4317382684 cites W1992297550 @default.
- W4317382684 cites W2006067028 @default.
- W4317382684 cites W2033412785 @default.
- W4317382684 cites W2061438946 @default.
- W4317382684 cites W2080651100 @default.
- W4317382684 cites W2087219845 @default.
- W4317382684 cites W2089792340 @default.
- W4317382684 cites W209050710 @default.
- W4317382684 cites W2092939357 @default.
- W4317382684 cites W2102093423 @default.
- W4317382684 cites W2118561568 @default.
- W4317382684 cites W2118840131 @default.
- W4317382684 cites W2155475871 @default.
- W4317382684 cites W2494343396 @default.
- W4317382684 cites W2569758175 @default.
- W4317382684 cites W2587345921 @default.
- W4317382684 cites W2760506659 @default.
- W4317382684 cites W2773381320 @default.
- W4317382684 cites W2778350156 @default.
- W4317382684 cites W2810586154 @default.
- W4317382684 cites W2815885864 @default.
- W4317382684 cites W2899742462 @default.
- W4317382684 cites W2911605501 @default.
- W4317382684 cites W2914487400 @default.
- W4317382684 cites W2948512238 @default.
- W4317382684 cites W2964378914 @default.
- W4317382684 cites W2981685989 @default.
- W4317382684 cites W2984594917 @default.
- W4317382684 cites W2990792561 @default.
- W4317382684 cites W2990955039 @default.
- W4317382684 cites W2995296280 @default.
- W4317382684 cites W2997184146 @default.
- W4317382684 cites W3003943436 @default.
- W4317382684 cites W3021176254 @default.
- W4317382684 cites W3022606748 @default.
- W4317382684 cites W3039539860 @default.
- W4317382684 cites W3046100511 @default.
- W4317382684 cites W3094195525 @default.
- W4317382684 cites W3094704314 @default.
- W4317382684 cites W3096997982 @default.
- W4317382684 cites W3111745562 @default.
- W4317382684 cites W3113265756 @default.
- W4317382684 cites W3117405170 @default.
- W4317382684 cites W3132189050 @default.
- W4317382684 cites W3135423326 @default.
- W4317382684 cites W3138340468 @default.
- W4317382684 cites W3154569184 @default.
- W4317382684 cites W3167007495 @default.
- W4317382684 cites W3175380096 @default.
- W4317382684 cites W3189604654 @default.
- W4317382684 cites W3196681873 @default.
- W4317382684 cites W3201123936 @default.
- W4317382684 cites W3217348554 @default.
- W4317382684 cites W4210968970 @default.
- W4317382684 cites W4224451672 @default.
- W4317382684 cites W4224996688 @default.
- W4317382684 cites W4244241149 @default.
- W4317382684 cites W4249545506 @default.
- W4317382684 cites W4280613995 @default.
- W4317382684 cites W4292162328 @default.
- W4317382684 cites W4296234809 @default.
- W4317382684 cites W4309726444 @default.
- W4317382684 cites W3094252784 @default.
- W4317382684 doi "https://doi.org/10.1038/s41598-023-28287-8" @default.
- W4317382684 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36653488" @default.
- W4317382684 hasPublicationYear "2023" @default.
- W4317382684 type Work @default.
- W4317382684 citedByCount "13" @default.
- W4317382684 countsByYear W43173826842023 @default.
- W4317382684 crossrefType "journal-article" @default.
- W4317382684 hasAuthorship W4317382684A5044575556 @default.
- W4317382684 hasAuthorship W4317382684A5066433321 @default.
- W4317382684 hasAuthorship W4317382684A5073924559 @default.
- W4317382684 hasAuthorship W4317382684A5080181112 @default.
- W4317382684 hasAuthorship W4317382684A5090789379 @default.
- W4317382684 hasBestOaLocation W43173826841 @default.
- W4317382684 hasConcept C105795698 @default.
- W4317382684 hasConcept C108583219 @default.
- W4317382684 hasConcept C116675565 @default.
- W4317382684 hasConcept C126314574 @default.
- W4317382684 hasConcept C136764020 @default.
- W4317382684 hasConcept C142724271 @default.
- W4317382684 hasConcept C149782125 @default.
- W4317382684 hasConcept C153294291 @default.
- W4317382684 hasConcept C154945302 @default.
- W4317382684 hasConcept C159047783 @default.
- W4317382684 hasConcept C159620131 @default.
- W4317382684 hasConcept C166957645 @default.
- W4317382684 hasConcept C18903297 @default.
- W4317382684 hasConcept C191935318 @default.