Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317383318> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4317383318 abstract "Language Identification is significant for most Natural Language Processing (NLP) tasks to work precisely. Language Identification is still very challenging because of the range of dialects. The major challenge in Language Identification (LID) task is the lack of availability of tools for understanding the context of multiple languages. We proposed a deep learning neural network Bi-LSTM CNN for word-level classification for Language Identification (LID) and localization of Roman Urdu and English in the code-switch text in this paper. We utilized the dataset of code-switch text having variant spellings of the same Roman Urdu words, generated from different social media platforms as they are a rich source of code-switch languages. We used GoogleNews Word2Vec Vectorizer for word embeddings. The embedding layer is followed by the Bidirectional long-short term memory (Bi-LSTM) layers along with the Convolutional Neural Network (CNN). We experimented with the dataset on different variations of LSTM and CNN to achieve the best possible results. We achieved 90.40% accuracy and a 90.39% F1 score." @default.
- W4317383318 created "2023-01-19" @default.
- W4317383318 creator A5024435748 @default.
- W4317383318 creator A5055460715 @default.
- W4317383318 creator A5061521072 @default.
- W4317383318 date "2022-12-14" @default.
- W4317383318 modified "2023-09-27" @default.
- W4317383318 title "Word-level Language Identification and Localization in Code-Mixed Urdu-English Text" @default.
- W4317383318 cites W2013623275 @default.
- W4317383318 cites W2030303969 @default.
- W4317383318 cites W2166660646 @default.
- W4317383318 cites W2250548009 @default.
- W4317383318 cites W2921848514 @default.
- W4317383318 cites W2964217331 @default.
- W4317383318 cites W3012385961 @default.
- W4317383318 cites W4213259260 @default.
- W4317383318 cites W4281250276 @default.
- W4317383318 doi "https://doi.org/10.1109/icosst57195.2022.10016848" @default.
- W4317383318 hasPublicationYear "2022" @default.
- W4317383318 type Work @default.
- W4317383318 citedByCount "0" @default.
- W4317383318 crossrefType "proceedings-article" @default.
- W4317383318 hasAuthorship W4317383318A5024435748 @default.
- W4317383318 hasAuthorship W4317383318A5055460715 @default.
- W4317383318 hasAuthorship W4317383318A5061521072 @default.
- W4317383318 hasConcept C116834253 @default.
- W4317383318 hasConcept C129792486 @default.
- W4317383318 hasConcept C138885662 @default.
- W4317383318 hasConcept C151730666 @default.
- W4317383318 hasConcept C154945302 @default.
- W4317383318 hasConcept C162324750 @default.
- W4317383318 hasConcept C177264268 @default.
- W4317383318 hasConcept C187736073 @default.
- W4317383318 hasConcept C195324797 @default.
- W4317383318 hasConcept C199360897 @default.
- W4317383318 hasConcept C204321447 @default.
- W4317383318 hasConcept C2776461190 @default.
- W4317383318 hasConcept C2776760102 @default.
- W4317383318 hasConcept C2777350258 @default.
- W4317383318 hasConcept C2777462759 @default.
- W4317383318 hasConcept C2779343474 @default.
- W4317383318 hasConcept C2780451532 @default.
- W4317383318 hasConcept C28490314 @default.
- W4317383318 hasConcept C41008148 @default.
- W4317383318 hasConcept C41608201 @default.
- W4317383318 hasConcept C41895202 @default.
- W4317383318 hasConcept C59822182 @default.
- W4317383318 hasConcept C81363708 @default.
- W4317383318 hasConcept C86803240 @default.
- W4317383318 hasConcept C90805587 @default.
- W4317383318 hasConceptScore W4317383318C116834253 @default.
- W4317383318 hasConceptScore W4317383318C129792486 @default.
- W4317383318 hasConceptScore W4317383318C138885662 @default.
- W4317383318 hasConceptScore W4317383318C151730666 @default.
- W4317383318 hasConceptScore W4317383318C154945302 @default.
- W4317383318 hasConceptScore W4317383318C162324750 @default.
- W4317383318 hasConceptScore W4317383318C177264268 @default.
- W4317383318 hasConceptScore W4317383318C187736073 @default.
- W4317383318 hasConceptScore W4317383318C195324797 @default.
- W4317383318 hasConceptScore W4317383318C199360897 @default.
- W4317383318 hasConceptScore W4317383318C204321447 @default.
- W4317383318 hasConceptScore W4317383318C2776461190 @default.
- W4317383318 hasConceptScore W4317383318C2776760102 @default.
- W4317383318 hasConceptScore W4317383318C2777350258 @default.
- W4317383318 hasConceptScore W4317383318C2777462759 @default.
- W4317383318 hasConceptScore W4317383318C2779343474 @default.
- W4317383318 hasConceptScore W4317383318C2780451532 @default.
- W4317383318 hasConceptScore W4317383318C28490314 @default.
- W4317383318 hasConceptScore W4317383318C41008148 @default.
- W4317383318 hasConceptScore W4317383318C41608201 @default.
- W4317383318 hasConceptScore W4317383318C41895202 @default.
- W4317383318 hasConceptScore W4317383318C59822182 @default.
- W4317383318 hasConceptScore W4317383318C81363708 @default.
- W4317383318 hasConceptScore W4317383318C86803240 @default.
- W4317383318 hasConceptScore W4317383318C90805587 @default.
- W4317383318 hasLocation W43173833181 @default.
- W4317383318 hasOpenAccess W4317383318 @default.
- W4317383318 hasPrimaryLocation W43173833181 @default.
- W4317383318 hasRelatedWork W2761417937 @default.
- W4317383318 hasRelatedWork W2795423989 @default.
- W4317383318 hasRelatedWork W2952874106 @default.
- W4317383318 hasRelatedWork W3036348210 @default.
- W4317383318 hasRelatedWork W3046869600 @default.
- W4317383318 hasRelatedWork W4298857951 @default.
- W4317383318 hasRelatedWork W4313247739 @default.
- W4317383318 hasRelatedWork W4313384562 @default.
- W4317383318 hasRelatedWork W4317383318 @default.
- W4317383318 hasRelatedWork W4362557444 @default.
- W4317383318 isParatext "false" @default.
- W4317383318 isRetracted "false" @default.
- W4317383318 workType "article" @default.