Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317383422> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4317383422 abstract "Cancer is one of the main causes of death worldwide, accounting for an incredible 5 million fatalities per year. In this article, innovative machine learning algorithms are used to detect lung cancer at an early stage. To extract features, computed tomographic scan images were used. In the initial stage of lung nodule, preprocessing is accomplished for data cleaning and resizing of dataset. In the second stage, a set of features was recovered from the preprocessed images using Fuzzy Local Information cMean (FLIcM). Aside from this, deep features were retrieved and merged together for improved performance using GoogLeNet. To detect small cell lung cancer (SCLC), scans with no tumours after categorization using Sup-port Vector Machine (SVM) were enhanced using Contrasted Limited Adaptive Histogram Equalization (CLAHE) to recognise small cell lung cancers. Other than simple nodules, which are noncancerous cells, the suggested model has shown to be the most effective at detecting SCLC; as a result, we were able to reach a classification performance of 91.5 %. The suggested model improves classification performance by 3 % when employing a diffused feature set for early stage detection of SCLC, compared without using CLAHE." @default.
- W4317383422 created "2023-01-19" @default.
- W4317383422 creator A5017602777 @default.
- W4317383422 creator A5034191972 @default.
- W4317383422 creator A5063921862 @default.
- W4317383422 creator A5088114814 @default.
- W4317383422 date "2022-12-14" @default.
- W4317383422 modified "2023-10-01" @default.
- W4317383422 title "An Effective Early Stage Detection of Lung Cancer Using Fuzzy Local Information cMean and GoogLeNet" @default.
- W4317383422 cites W1986649315 @default.
- W4317383422 cites W2016912562 @default.
- W4317383422 cites W2033978778 @default.
- W4317383422 cites W2165012164 @default.
- W4317383422 cites W2783620100 @default.
- W4317383422 cites W2787564976 @default.
- W4317383422 cites W2899504557 @default.
- W4317383422 cites W2945759189 @default.
- W4317383422 cites W3111825573 @default.
- W4317383422 cites W3123145971 @default.
- W4317383422 cites W3154382135 @default.
- W4317383422 cites W4207066074 @default.
- W4317383422 doi "https://doi.org/10.1109/icosst57195.2022.10016866" @default.
- W4317383422 hasPublicationYear "2022" @default.
- W4317383422 type Work @default.
- W4317383422 citedByCount "0" @default.
- W4317383422 crossrefType "proceedings-article" @default.
- W4317383422 hasAuthorship W4317383422A5017602777 @default.
- W4317383422 hasAuthorship W4317383422A5034191972 @default.
- W4317383422 hasAuthorship W4317383422A5063921862 @default.
- W4317383422 hasAuthorship W4317383422A5088114814 @default.
- W4317383422 hasConcept C115961682 @default.
- W4317383422 hasConcept C12267149 @default.
- W4317383422 hasConcept C136943445 @default.
- W4317383422 hasConcept C142724271 @default.
- W4317383422 hasConcept C146357865 @default.
- W4317383422 hasConcept C151730666 @default.
- W4317383422 hasConcept C153180895 @default.
- W4317383422 hasConcept C154945302 @default.
- W4317383422 hasConcept C2776256026 @default.
- W4317383422 hasConcept C30387639 @default.
- W4317383422 hasConcept C41008148 @default.
- W4317383422 hasConcept C53533937 @default.
- W4317383422 hasConcept C58489278 @default.
- W4317383422 hasConcept C71924100 @default.
- W4317383422 hasConcept C86803240 @default.
- W4317383422 hasConceptScore W4317383422C115961682 @default.
- W4317383422 hasConceptScore W4317383422C12267149 @default.
- W4317383422 hasConceptScore W4317383422C136943445 @default.
- W4317383422 hasConceptScore W4317383422C142724271 @default.
- W4317383422 hasConceptScore W4317383422C146357865 @default.
- W4317383422 hasConceptScore W4317383422C151730666 @default.
- W4317383422 hasConceptScore W4317383422C153180895 @default.
- W4317383422 hasConceptScore W4317383422C154945302 @default.
- W4317383422 hasConceptScore W4317383422C2776256026 @default.
- W4317383422 hasConceptScore W4317383422C30387639 @default.
- W4317383422 hasConceptScore W4317383422C41008148 @default.
- W4317383422 hasConceptScore W4317383422C53533937 @default.
- W4317383422 hasConceptScore W4317383422C58489278 @default.
- W4317383422 hasConceptScore W4317383422C71924100 @default.
- W4317383422 hasConceptScore W4317383422C86803240 @default.
- W4317383422 hasLocation W43173834221 @default.
- W4317383422 hasOpenAccess W4317383422 @default.
- W4317383422 hasPrimaryLocation W43173834221 @default.
- W4317383422 hasRelatedWork W1560877396 @default.
- W4317383422 hasRelatedWork W1983610137 @default.
- W4317383422 hasRelatedWork W2020648798 @default.
- W4317383422 hasRelatedWork W2028968693 @default.
- W4317383422 hasRelatedWork W2087874231 @default.
- W4317383422 hasRelatedWork W2124910865 @default.
- W4317383422 hasRelatedWork W2136748848 @default.
- W4317383422 hasRelatedWork W2293399436 @default.
- W4317383422 hasRelatedWork W3005556686 @default.
- W4317383422 hasRelatedWork W2136567439 @default.
- W4317383422 isParatext "false" @default.
- W4317383422 isRetracted "false" @default.
- W4317383422 workType "article" @default.