Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317383795> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4317383795 abstract "In order to help the power industry apportion the responsibility of carbon emissions and optimize the carbon emission reduction strategy, the prediction of carbon emissions related to power on the user side is studied. According to the method of predicting the power consumption first and then the electric carbon conversion, the carbon emission related to the user side can be predicted. The power consumption prediction of users is the core. A multi-modal embedded recurrent neural network is designed to model the short-term dependence of power consumption sequence considering the multiple influencing factors of power consumption; A historical attention mechanism is proposed to capture the periodicity factors in the power consumption sequence by considering the periodicity of users' power consumption habits. The experimental results show that the performance of the proposed method is significantly better than that of some commonly used power consumption prediction methods, which is helpful for the accurate prediction of power-related carbon emissions on the user side." @default.
- W4317383795 created "2023-01-19" @default.
- W4317383795 creator A5030034440 @default.
- W4317383795 creator A5031729638 @default.
- W4317383795 creator A5044757881 @default.
- W4317383795 creator A5048301114 @default.
- W4317383795 creator A5051577475 @default.
- W4317383795 creator A5090076448 @default.
- W4317383795 date "2022-12-11" @default.
- W4317383795 modified "2023-09-24" @default.
- W4317383795 title "A Forecasting Method for User-Side Power-Related Carbon Emissions" @default.
- W4317383795 cites W2015883228 @default.
- W4317383795 cites W2144499799 @default.
- W4317383795 cites W2546717368 @default.
- W4317383795 cites W2951507346 @default.
- W4317383795 cites W2970190848 @default.
- W4317383795 cites W2979978950 @default.
- W4317383795 cites W4291635353 @default.
- W4317383795 doi "https://doi.org/10.1109/tocs56154.2022.10016040" @default.
- W4317383795 hasPublicationYear "2022" @default.
- W4317383795 type Work @default.
- W4317383795 citedByCount "0" @default.
- W4317383795 crossrefType "proceedings-article" @default.
- W4317383795 hasAuthorship W4317383795A5030034440 @default.
- W4317383795 hasAuthorship W4317383795A5031729638 @default.
- W4317383795 hasAuthorship W4317383795A5044757881 @default.
- W4317383795 hasAuthorship W4317383795A5048301114 @default.
- W4317383795 hasAuthorship W4317383795A5051577475 @default.
- W4317383795 hasAuthorship W4317383795A5090076448 @default.
- W4317383795 hasConcept C119599485 @default.
- W4317383795 hasConcept C121332964 @default.
- W4317383795 hasConcept C127413603 @default.
- W4317383795 hasConcept C134560507 @default.
- W4317383795 hasConcept C144024400 @default.
- W4317383795 hasConcept C162324750 @default.
- W4317383795 hasConcept C163258240 @default.
- W4317383795 hasConcept C170777988 @default.
- W4317383795 hasConcept C171146098 @default.
- W4317383795 hasConcept C188027245 @default.
- W4317383795 hasConcept C192562407 @default.
- W4317383795 hasConcept C200601418 @default.
- W4317383795 hasConcept C206658404 @default.
- W4317383795 hasConcept C2984118289 @default.
- W4317383795 hasConcept C30772137 @default.
- W4317383795 hasConcept C36289849 @default.
- W4317383795 hasConcept C41008148 @default.
- W4317383795 hasConcept C44154836 @default.
- W4317383795 hasConcept C45882903 @default.
- W4317383795 hasConcept C62520636 @default.
- W4317383795 hasConcept C71139939 @default.
- W4317383795 hasConcept C79403827 @default.
- W4317383795 hasConceptScore W4317383795C119599485 @default.
- W4317383795 hasConceptScore W4317383795C121332964 @default.
- W4317383795 hasConceptScore W4317383795C127413603 @default.
- W4317383795 hasConceptScore W4317383795C134560507 @default.
- W4317383795 hasConceptScore W4317383795C144024400 @default.
- W4317383795 hasConceptScore W4317383795C162324750 @default.
- W4317383795 hasConceptScore W4317383795C163258240 @default.
- W4317383795 hasConceptScore W4317383795C170777988 @default.
- W4317383795 hasConceptScore W4317383795C171146098 @default.
- W4317383795 hasConceptScore W4317383795C188027245 @default.
- W4317383795 hasConceptScore W4317383795C192562407 @default.
- W4317383795 hasConceptScore W4317383795C200601418 @default.
- W4317383795 hasConceptScore W4317383795C206658404 @default.
- W4317383795 hasConceptScore W4317383795C2984118289 @default.
- W4317383795 hasConceptScore W4317383795C30772137 @default.
- W4317383795 hasConceptScore W4317383795C36289849 @default.
- W4317383795 hasConceptScore W4317383795C41008148 @default.
- W4317383795 hasConceptScore W4317383795C44154836 @default.
- W4317383795 hasConceptScore W4317383795C45882903 @default.
- W4317383795 hasConceptScore W4317383795C62520636 @default.
- W4317383795 hasConceptScore W4317383795C71139939 @default.
- W4317383795 hasConceptScore W4317383795C79403827 @default.
- W4317383795 hasFunder F4320335967 @default.
- W4317383795 hasLocation W43173837951 @default.
- W4317383795 hasOpenAccess W4317383795 @default.
- W4317383795 hasPrimaryLocation W43173837951 @default.
- W4317383795 hasRelatedWork W1881881992 @default.
- W4317383795 hasRelatedWork W2354618818 @default.
- W4317383795 hasRelatedWork W2354847464 @default.
- W4317383795 hasRelatedWork W2358013983 @default.
- W4317383795 hasRelatedWork W2375846913 @default.
- W4317383795 hasRelatedWork W2379067392 @default.
- W4317383795 hasRelatedWork W2899413299 @default.
- W4317383795 hasRelatedWork W3016249502 @default.
- W4317383795 hasRelatedWork W3023302711 @default.
- W4317383795 hasRelatedWork W3209944079 @default.
- W4317383795 isParatext "false" @default.
- W4317383795 isRetracted "false" @default.
- W4317383795 workType "article" @default.