Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317387935> ?p ?o ?g. }
- W4317387935 endingPage "5057" @default.
- W4317387935 startingPage "5049" @default.
- W4317387935 abstract "All-solid-state batteries (ASSBs) have attracted considerable attention because of their higher energy density and stability than conventional lithium-ion batteries (LIBs). For the development of promising ASSBs, solid-state electrolytes (SSEs) are essential to achieve structural integrity. Thus, in this study, a machine-learning-based surrogate model was developed to search for ideal garnet-type SSE candidates. The well-known Li7La3Zr2O12 structure was used as a base material, and 73 chemical elements were substituted on La and Zr sites, leading to 5329 potential structures. First, the elasticity database and machine learning descriptors were adopted from previous studies. Subsequently, the machine-learning-based surrogate model was applied to predict the elastic properties of potential SSE materials, followed by first-principles calculations for validation. Furthermore, the active learning process demonstrated that it can effectively decrease prediction uncertainty. Finally, the ionic conductivity of the mechanically superior materials was predicted to suggest optimal SSE candidates. Then, ab initio molecular dynamics simulations are followed for confirmation of diffusion behavior for materials classified as superionic; 10 new tetragonal-phase garnet SSEs are verified with superior mechanical and ionic conductivity properties. We believe that the current model and the constructed database will become a cornerstone for the development of next-generation SSE materials." @default.
- W4317387935 created "2023-01-19" @default.
- W4317387935 creator A5029402116 @default.
- W4317387935 creator A5052510336 @default.
- W4317387935 creator A5052706712 @default.
- W4317387935 creator A5054443352 @default.
- W4317387935 date "2023-01-19" @default.
- W4317387935 modified "2023-10-14" @default.
- W4317387935 title "Accelerated Discovery of Novel Garnet-Type Solid-State Electrolyte Candidates via Machine Learning" @default.
- W4317387935 cites W1963999076 @default.
- W4317387935 cites W1966354062 @default.
- W4317387935 cites W1981045787 @default.
- W4317387935 cites W1981368803 @default.
- W4317387935 cites W1992985800 @default.
- W4317387935 cites W1996879303 @default.
- W4317387935 cites W2002506550 @default.
- W4317387935 cites W2007395042 @default.
- W4317387935 cites W2069691371 @default.
- W4317387935 cites W2072635242 @default.
- W4317387935 cites W2083222334 @default.
- W4317387935 cites W2092363334 @default.
- W4317387935 cites W2206021129 @default.
- W4317387935 cites W2274119788 @default.
- W4317387935 cites W2345045672 @default.
- W4317387935 cites W2464725281 @default.
- W4317387935 cites W2559612475 @default.
- W4317387935 cites W2582529763 @default.
- W4317387935 cites W2734520197 @default.
- W4317387935 cites W2765540043 @default.
- W4317387935 cites W2766856748 @default.
- W4317387935 cites W2772004376 @default.
- W4317387935 cites W2790960441 @default.
- W4317387935 cites W2791926873 @default.
- W4317387935 cites W2796963093 @default.
- W4317387935 cites W2803238249 @default.
- W4317387935 cites W2895013133 @default.
- W4317387935 cites W2895062132 @default.
- W4317387935 cites W2898844932 @default.
- W4317387935 cites W2905476207 @default.
- W4317387935 cites W2922127369 @default.
- W4317387935 cites W2930981519 @default.
- W4317387935 cites W2938998554 @default.
- W4317387935 cites W2949095042 @default.
- W4317387935 cites W3008894119 @default.
- W4317387935 cites W3011658338 @default.
- W4317387935 cites W3015452587 @default.
- W4317387935 cites W3023644111 @default.
- W4317387935 cites W3037554945 @default.
- W4317387935 cites W3038591351 @default.
- W4317387935 cites W3041512563 @default.
- W4317387935 cites W3087596868 @default.
- W4317387935 cites W3094089673 @default.
- W4317387935 cites W3107854976 @default.
- W4317387935 cites W3125542198 @default.
- W4317387935 cites W3134886887 @default.
- W4317387935 cites W3135927299 @default.
- W4317387935 cites W3155282454 @default.
- W4317387935 cites W3155374295 @default.
- W4317387935 cites W3164305566 @default.
- W4317387935 cites W3189547200 @default.
- W4317387935 cites W3198105059 @default.
- W4317387935 cites W3208687975 @default.
- W4317387935 cites W3213854592 @default.
- W4317387935 cites W4211113052 @default.
- W4317387935 cites W4221032882 @default.
- W4317387935 cites W4280649266 @default.
- W4317387935 cites W4289687541 @default.
- W4317387935 cites W4313237548 @default.
- W4317387935 doi "https://doi.org/10.1021/acsami.2c15980" @default.
- W4317387935 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36654192" @default.
- W4317387935 hasPublicationYear "2023" @default.
- W4317387935 type Work @default.
- W4317387935 citedByCount "2" @default.
- W4317387935 countsByYear W43173879352023 @default.
- W4317387935 crossrefType "journal-article" @default.
- W4317387935 hasAuthorship W4317387935A5029402116 @default.
- W4317387935 hasAuthorship W4317387935A5052510336 @default.
- W4317387935 hasAuthorship W4317387935A5052706712 @default.
- W4317387935 hasAuthorship W4317387935A5054443352 @default.
- W4317387935 hasConcept C109883240 @default.
- W4317387935 hasConcept C119857082 @default.
- W4317387935 hasConcept C121332964 @default.
- W4317387935 hasConcept C134018914 @default.
- W4317387935 hasConcept C138679309 @default.
- W4317387935 hasConcept C145148216 @default.
- W4317387935 hasConcept C147789679 @default.
- W4317387935 hasConcept C154945302 @default.
- W4317387935 hasConcept C170751736 @default.
- W4317387935 hasConcept C171250308 @default.
- W4317387935 hasConcept C17525397 @default.
- W4317387935 hasConcept C178790620 @default.
- W4317387935 hasConcept C185592680 @default.
- W4317387935 hasConcept C192562407 @default.
- W4317387935 hasConcept C2182769 @default.
- W4317387935 hasConcept C2778541603 @default.
- W4317387935 hasConcept C2781442258 @default.
- W4317387935 hasConcept C41008148 @default.
- W4317387935 hasConcept C44280652 @default.