Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317388085> ?p ?o ?g. }
- W4317388085 abstract "Reinforcement learning (RL) has shown superior performance in solving sequential decision problems. In recent years, RL is gradually being used to solve unmanned driving collision avoidance decision-making problems in complex scenarios. However, ships encounter many scenarios, and the differences in scenarios will seriously hinder the application of RL in collision avoidance at sea. Moreover, the iterative speed of trial-and-error learning for RL in multi-ship encounter scenarios is slow. To solve this problem, this study develops a novel intelligent collision avoidance algorithm based on approximate representation reinforcement learning (AR-RL) to realize the collision avoidance of maritime autonomous surface ships (MASS) in a continuous state space environment involving interactive learning capability like a crew in navigation situation. The new algorithm uses an approximate representation model to deal with the optimization of collision avoidance strategies in a dynamic target encounter situation. The model is combined with prior knowledge and International Regulations for Preventing Collisions at Sea (COLREGs) for optimal performance. This is followed by a design of an online solution to a value function approximation model based on gradient descent. This approach can solve the problem of large-scale collision avoidance policy learning in static-dynamic obstacles mixed environment. Finally, algorithm tests were constructed though two scenarios (i.e., the coastal static obstacle environment and the static-dynamic obstacles mixed environment) using Tianjin Port as an example and compared with multiple groups of algorithms. The results show that the algorithm can improve the large-scale learning efficiency of continuous state space of dynamic obstacle environment by approximate representation. At the same time, the MASS can efficiently and safely avoid obstacles enroute to reaching its target destination. It therefore makes significant contributions to ensuring safety at sea in a mixed traffic involving both manned and MASS in near future." @default.
- W4317388085 created "2023-01-19" @default.
- W4317388085 creator A5008156463 @default.
- W4317388085 creator A5046173951 @default.
- W4317388085 creator A5048283729 @default.
- W4317388085 creator A5053441658 @default.
- W4317388085 creator A5056988611 @default.
- W4317388085 date "2023-01-19" @default.
- W4317388085 modified "2023-10-10" @default.
- W4317388085 title "Collision avoidance for autonomous ship using deep reinforcement learning and prior-knowledge-based approximate representation" @default.
- W4317388085 cites W2015299746 @default.
- W4317388085 cites W2076089699 @default.
- W4317388085 cites W2128350432 @default.
- W4317388085 cites W2904814783 @default.
- W4317388085 cites W2970947859 @default.
- W4317388085 cites W2974556546 @default.
- W4317388085 cites W2976348340 @default.
- W4317388085 cites W2981207549 @default.
- W4317388085 cites W3033046844 @default.
- W4317388085 cites W3043239066 @default.
- W4317388085 cites W3047350571 @default.
- W4317388085 cites W3080522899 @default.
- W4317388085 cites W3116429988 @default.
- W4317388085 cites W3127127289 @default.
- W4317388085 cites W3128181551 @default.
- W4317388085 cites W3137738592 @default.
- W4317388085 cites W3157789213 @default.
- W4317388085 cites W3165782304 @default.
- W4317388085 cites W3168204680 @default.
- W4317388085 cites W3174398482 @default.
- W4317388085 cites W3198359393 @default.
- W4317388085 cites W3199630830 @default.
- W4317388085 cites W3204597951 @default.
- W4317388085 cites W3206041612 @default.
- W4317388085 cites W3207753311 @default.
- W4317388085 cites W4225249777 @default.
- W4317388085 cites W4225918639 @default.
- W4317388085 cites W4226213199 @default.
- W4317388085 cites W4280560182 @default.
- W4317388085 doi "https://doi.org/10.3389/fmars.2022.1084763" @default.
- W4317388085 hasPublicationYear "2023" @default.
- W4317388085 type Work @default.
- W4317388085 citedByCount "11" @default.
- W4317388085 countsByYear W43173880852023 @default.
- W4317388085 crossrefType "journal-article" @default.
- W4317388085 hasAuthorship W4317388085A5008156463 @default.
- W4317388085 hasAuthorship W4317388085A5046173951 @default.
- W4317388085 hasAuthorship W4317388085A5048283729 @default.
- W4317388085 hasAuthorship W4317388085A5053441658 @default.
- W4317388085 hasAuthorship W4317388085A5056988611 @default.
- W4317388085 hasBestOaLocation W43173880851 @default.
- W4317388085 hasConcept C105795698 @default.
- W4317388085 hasConcept C121704057 @default.
- W4317388085 hasConcept C126255220 @default.
- W4317388085 hasConcept C14646407 @default.
- W4317388085 hasConcept C154945302 @default.
- W4317388085 hasConcept C17744445 @default.
- W4317388085 hasConcept C199539241 @default.
- W4317388085 hasConcept C19966478 @default.
- W4317388085 hasConcept C2776359362 @default.
- W4317388085 hasConcept C2776650193 @default.
- W4317388085 hasConcept C2780864053 @default.
- W4317388085 hasConcept C33923547 @default.
- W4317388085 hasConcept C38652104 @default.
- W4317388085 hasConcept C41008148 @default.
- W4317388085 hasConcept C6683253 @default.
- W4317388085 hasConcept C72434380 @default.
- W4317388085 hasConcept C90509273 @default.
- W4317388085 hasConcept C94625758 @default.
- W4317388085 hasConcept C97541855 @default.
- W4317388085 hasConceptScore W4317388085C105795698 @default.
- W4317388085 hasConceptScore W4317388085C121704057 @default.
- W4317388085 hasConceptScore W4317388085C126255220 @default.
- W4317388085 hasConceptScore W4317388085C14646407 @default.
- W4317388085 hasConceptScore W4317388085C154945302 @default.
- W4317388085 hasConceptScore W4317388085C17744445 @default.
- W4317388085 hasConceptScore W4317388085C199539241 @default.
- W4317388085 hasConceptScore W4317388085C19966478 @default.
- W4317388085 hasConceptScore W4317388085C2776359362 @default.
- W4317388085 hasConceptScore W4317388085C2776650193 @default.
- W4317388085 hasConceptScore W4317388085C2780864053 @default.
- W4317388085 hasConceptScore W4317388085C33923547 @default.
- W4317388085 hasConceptScore W4317388085C38652104 @default.
- W4317388085 hasConceptScore W4317388085C41008148 @default.
- W4317388085 hasConceptScore W4317388085C6683253 @default.
- W4317388085 hasConceptScore W4317388085C72434380 @default.
- W4317388085 hasConceptScore W4317388085C90509273 @default.
- W4317388085 hasConceptScore W4317388085C94625758 @default.
- W4317388085 hasConceptScore W4317388085C97541855 @default.
- W4317388085 hasFunder F4320336584 @default.
- W4317388085 hasLocation W43173880851 @default.
- W4317388085 hasLocation W43173880852 @default.
- W4317388085 hasOpenAccess W4317388085 @default.
- W4317388085 hasPrimaryLocation W43173880851 @default.
- W4317388085 hasRelatedWork W1971413691 @default.
- W4317388085 hasRelatedWork W2071957557 @default.
- W4317388085 hasRelatedWork W2155948905 @default.
- W4317388085 hasRelatedWork W2346323633 @default.
- W4317388085 hasRelatedWork W2356867392 @default.
- W4317388085 hasRelatedWork W2782776446 @default.