Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317419376> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4317419376 abstract "When users exchange data with Unmanned Aerial Vehicles - (UAVs) over Air-to-Ground - (A2G) wireless communication networks, they expose the link to attacks that could increase packet loss and might disrupt connectivity. For example, in emergency deliveries, losing control information (i.e., data related to the UAV control communication) might result in accidents that cause UAV destruction and damage to buildings or other elements. To prevent these problems, these issues must be addressed in 5G and 6G scenarios. This research offers a Deep Learning (DL) approach for detecting attacks on UAVs equipped with Orthogonal Frequency Division Multiplexing - (OFDM) receivers on Clustered Delay Line (CDL) channels in highly complex scenarios involving authenticated terrestrial users, as well as attackers in unknown locations. We use the two observable parameters available in 5G UAV connections: the Received Signal Strength Indicator (RSSI) and the Signal to Interference plus Noise Ratio (SINR). The developed algorithm is generalizable regarding attack identification, which does not occur during training. Further, it can identify all the attackers in the environment with 20 terrestrial users. A deeper investigation into the timing requirements for recognizing attacks shows that after training, the minimum time necessary after the attack begins is 100 ms, and the minimum attack power is 2 dBm, which is the same power that the authenticated UAV uses. The developed algorithm also detects moving attackers from a distance of 500 m." @default.
- W4317419376 created "2023-01-19" @default.
- W4317419376 creator A5018701399 @default.
- W4317419376 creator A5023238754 @default.
- W4317419376 creator A5028474112 @default.
- W4317419376 creator A5035924091 @default.
- W4317419376 creator A5053030714 @default.
- W4317419376 creator A5054976554 @default.
- W4317419376 creator A5056942650 @default.
- W4317419376 creator A5070300320 @default.
- W4317419376 date "2022-09-01" @default.
- W4317419376 modified "2023-10-18" @default.
- W4317419376 title "A Convolutional Attention Based Deep Learning Solution for 5G UAV Network Attack Recognition over Fading Channels and Interference" @default.
- W4317419376 cites W2598525681 @default.
- W4317419376 cites W2892035503 @default.
- W4317419376 cites W3102696584 @default.
- W4317419376 cites W4210944412 @default.
- W4317419376 cites W4293095081 @default.
- W4317419376 doi "https://doi.org/10.1109/vtc2022-fall57202.2022.10012726" @default.
- W4317419376 hasPublicationYear "2022" @default.
- W4317419376 type Work @default.
- W4317419376 citedByCount "0" @default.
- W4317419376 crossrefType "proceedings-article" @default.
- W4317419376 hasAuthorship W4317419376A5018701399 @default.
- W4317419376 hasAuthorship W4317419376A5023238754 @default.
- W4317419376 hasAuthorship W4317419376A5028474112 @default.
- W4317419376 hasAuthorship W4317419376A5035924091 @default.
- W4317419376 hasAuthorship W4317419376A5053030714 @default.
- W4317419376 hasAuthorship W4317419376A5054976554 @default.
- W4317419376 hasAuthorship W4317419376A5056942650 @default.
- W4317419376 hasAuthorship W4317419376A5070300320 @default.
- W4317419376 hasBestOaLocation W43174193762 @default.
- W4317419376 hasConcept C115961682 @default.
- W4317419376 hasConcept C127162648 @default.
- W4317419376 hasConcept C154945302 @default.
- W4317419376 hasConcept C158379750 @default.
- W4317419376 hasConcept C31258907 @default.
- W4317419376 hasConcept C32022120 @default.
- W4317419376 hasConcept C38652104 @default.
- W4317419376 hasConcept C40409654 @default.
- W4317419376 hasConcept C41008148 @default.
- W4317419376 hasConcept C555944384 @default.
- W4317419376 hasConcept C76155785 @default.
- W4317419376 hasConcept C79403827 @default.
- W4317419376 hasConcept C81978471 @default.
- W4317419376 hasConcept C99498987 @default.
- W4317419376 hasConceptScore W4317419376C115961682 @default.
- W4317419376 hasConceptScore W4317419376C127162648 @default.
- W4317419376 hasConceptScore W4317419376C154945302 @default.
- W4317419376 hasConceptScore W4317419376C158379750 @default.
- W4317419376 hasConceptScore W4317419376C31258907 @default.
- W4317419376 hasConceptScore W4317419376C32022120 @default.
- W4317419376 hasConceptScore W4317419376C38652104 @default.
- W4317419376 hasConceptScore W4317419376C40409654 @default.
- W4317419376 hasConceptScore W4317419376C41008148 @default.
- W4317419376 hasConceptScore W4317419376C555944384 @default.
- W4317419376 hasConceptScore W4317419376C76155785 @default.
- W4317419376 hasConceptScore W4317419376C79403827 @default.
- W4317419376 hasConceptScore W4317419376C81978471 @default.
- W4317419376 hasConceptScore W4317419376C99498987 @default.
- W4317419376 hasLocation W43174193761 @default.
- W4317419376 hasLocation W43174193762 @default.
- W4317419376 hasOpenAccess W4317419376 @default.
- W4317419376 hasPrimaryLocation W43174193761 @default.
- W4317419376 hasRelatedWork W2010530070 @default.
- W4317419376 hasRelatedWork W2123410437 @default.
- W4317419376 hasRelatedWork W2134524765 @default.
- W4317419376 hasRelatedWork W2158288340 @default.
- W4317419376 hasRelatedWork W2164953972 @default.
- W4317419376 hasRelatedWork W2363542843 @default.
- W4317419376 hasRelatedWork W2365797070 @default.
- W4317419376 hasRelatedWork W2392098846 @default.
- W4317419376 hasRelatedWork W2952155161 @default.
- W4317419376 hasRelatedWork W4283464571 @default.
- W4317419376 isParatext "false" @default.
- W4317419376 isRetracted "false" @default.
- W4317419376 workType "article" @default.