Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317425179> ?p ?o ?g. }
- W4317425179 endingPage "18" @default.
- W4317425179 startingPage "18" @default.
- W4317425179 abstract "Healthcare data are distributed and confidential, making it difficult to use centralized automatic diagnostic techniques. For example, different hospitals hold the electronic health records (EHRs) of different patient populations; however, transferring this data between hospitals is difficult due to the sensitive nature of the information. This presents a significant obstacle to the development of efficient and generalizable analytical methods that require a large amount of diverse Big Data. Federated learning allows multiple institutions to work together to develop a machine learning algorithm without sharing their data. We conducted a systematic study to analyze the current state of FL in the healthcare industry and explore both the limitations of this technology and its potential. Organizations share the parameters of their models with each other. This allows them to reap the benefits of a model developed with a richer data set while protecting the confidentiality of their data. Standard methods for large-scale machine learning, distributed optimization, and privacy-friendly data analytics need to be fundamentally rethought to address the new problems posed by training on diverse networks that may contain large amounts of data. In this article, we discuss the particular qualities and difficulties of federated learning, provide a comprehensive overview of current approaches, and outline several directions for future work that are relevant to a variety of research communities. These issues are important to many different research communities." @default.
- W4317425179 created "2023-01-19" @default.
- W4317425179 creator A5077790654 @default.
- W4317425179 creator A5083628492 @default.
- W4317425179 creator A5084934349 @default.
- W4317425179 date "2023-01-18" @default.
- W4317425179 modified "2023-10-01" @default.
- W4317425179 title "Federated Learning to Safeguard Patients Data: A Medical Image Retrieval Case" @default.
- W4317425179 cites W1510952750 @default.
- W4317425179 cites W1968265138 @default.
- W4317425179 cites W1999602050 @default.
- W4317425179 cites W2041416246 @default.
- W4317425179 cites W2082624086 @default.
- W4317425179 cites W2093367651 @default.
- W4317425179 cites W2128906841 @default.
- W4317425179 cites W2473418344 @default.
- W4317425179 cites W2536058570 @default.
- W4317425179 cites W2701059868 @default.
- W4317425179 cites W2781091734 @default.
- W4317425179 cites W2790412025 @default.
- W4317425179 cites W2900594532 @default.
- W4317425179 cites W2941578813 @default.
- W4317425179 cites W2963318081 @default.
- W4317425179 cites W2980369520 @default.
- W4317425179 cites W2982482159 @default.
- W4317425179 cites W3015636663 @default.
- W4317425179 cites W3017855299 @default.
- W4317425179 cites W3101156210 @default.
- W4317425179 cites W3138795569 @default.
- W4317425179 cites W3159080474 @default.
- W4317425179 cites W3169231731 @default.
- W4317425179 cites W3178709966 @default.
- W4317425179 cites W4247858607 @default.
- W4317425179 cites W4283276570 @default.
- W4317425179 cites W4285174182 @default.
- W4317425179 cites W4293155325 @default.
- W4317425179 cites W4306953471 @default.
- W4317425179 doi "https://doi.org/10.3390/bdcc7010018" @default.
- W4317425179 hasPublicationYear "2023" @default.
- W4317425179 type Work @default.
- W4317425179 citedByCount "5" @default.
- W4317425179 countsByYear W43174251792023 @default.
- W4317425179 crossrefType "journal-article" @default.
- W4317425179 hasAuthorship W4317425179A5077790654 @default.
- W4317425179 hasAuthorship W4317425179A5083628492 @default.
- W4317425179 hasAuthorship W4317425179A5084934349 @default.
- W4317425179 hasBestOaLocation W43174251791 @default.
- W4317425179 hasConcept C119857082 @default.
- W4317425179 hasConcept C124101348 @default.
- W4317425179 hasConcept C136197465 @default.
- W4317425179 hasConcept C142724271 @default.
- W4317425179 hasConcept C144133560 @default.
- W4317425179 hasConcept C154945302 @default.
- W4317425179 hasConcept C155202549 @default.
- W4317425179 hasConcept C160735492 @default.
- W4317425179 hasConcept C162324750 @default.
- W4317425179 hasConcept C177264268 @default.
- W4317425179 hasConcept C17744445 @default.
- W4317425179 hasConcept C199360897 @default.
- W4317425179 hasConcept C199539241 @default.
- W4317425179 hasConcept C204787440 @default.
- W4317425179 hasConcept C2522767166 @default.
- W4317425179 hasConcept C2776650193 @default.
- W4317425179 hasConcept C2779965156 @default.
- W4317425179 hasConcept C2780771206 @default.
- W4317425179 hasConcept C38652104 @default.
- W4317425179 hasConcept C41008148 @default.
- W4317425179 hasConcept C50522688 @default.
- W4317425179 hasConcept C56739046 @default.
- W4317425179 hasConcept C71745522 @default.
- W4317425179 hasConcept C71924100 @default.
- W4317425179 hasConcept C75684735 @default.
- W4317425179 hasConceptScore W4317425179C119857082 @default.
- W4317425179 hasConceptScore W4317425179C124101348 @default.
- W4317425179 hasConceptScore W4317425179C136197465 @default.
- W4317425179 hasConceptScore W4317425179C142724271 @default.
- W4317425179 hasConceptScore W4317425179C144133560 @default.
- W4317425179 hasConceptScore W4317425179C154945302 @default.
- W4317425179 hasConceptScore W4317425179C155202549 @default.
- W4317425179 hasConceptScore W4317425179C160735492 @default.
- W4317425179 hasConceptScore W4317425179C162324750 @default.
- W4317425179 hasConceptScore W4317425179C177264268 @default.
- W4317425179 hasConceptScore W4317425179C17744445 @default.
- W4317425179 hasConceptScore W4317425179C199360897 @default.
- W4317425179 hasConceptScore W4317425179C199539241 @default.
- W4317425179 hasConceptScore W4317425179C204787440 @default.
- W4317425179 hasConceptScore W4317425179C2522767166 @default.
- W4317425179 hasConceptScore W4317425179C2776650193 @default.
- W4317425179 hasConceptScore W4317425179C2779965156 @default.
- W4317425179 hasConceptScore W4317425179C2780771206 @default.
- W4317425179 hasConceptScore W4317425179C38652104 @default.
- W4317425179 hasConceptScore W4317425179C41008148 @default.
- W4317425179 hasConceptScore W4317425179C50522688 @default.
- W4317425179 hasConceptScore W4317425179C56739046 @default.
- W4317425179 hasConceptScore W4317425179C71745522 @default.
- W4317425179 hasConceptScore W4317425179C71924100 @default.
- W4317425179 hasConceptScore W4317425179C75684735 @default.
- W4317425179 hasIssue "1" @default.