Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317433467> ?p ?o ?g. }
- W4317433467 abstract "The agriculture sector provides the majority of food supplies, ensures food security, and promotes sustainable development. Due to recent climate changes as well as trends in human population growth and environmental degradation, the need for timely agricultural information continues to rise. This study analyzes and predicts the impacts of climate change on food security (FS). For 2002-2021, Landsat, MODIS satellite images and predisposing variables (land surface temperature (LST), evapotranspiration, precipitation, sunny days, cloud ratio, soil salinity, soil moisture, groundwater quality, soil types, digital elevation model, slope, and aspect) were used. First, we used a deep learning convolutional neural network (DL-CNN) based on the Google Earth Engine (GEE) to detect agricultural land (AL). A remote sensing-based approach combined with the analytical network process (ANP) model was used to identify frost-affected areas. We then analyzed the relationship between climatic, geospatial, and topographical variables and AL and frost-affected areas. We found negative correlations of - 0.80, - 0.58, - 0.43, and - 0.45 between AL and LST, evapotranspiration, cloud ratio, and soil salinity, respectively. There is a positive correlation between AL and precipitation, sunny days, soil moisture, and groundwater quality of 0.39, 0.25, 0.21, and 0.77, respectively. The correlation between frost-affected areas and LST, evapotranspiration, cloud ratio, elevation, slope, and aspect are 0.55, 0.40, 0.52, 0.35, 0.45, and 0.39. Frost-affected areas have negative correlations with precipitation, sunny day, and soil moisture of - 0.68, - 0.23, and - 0.38, respectively. Our findings show that the increase in LST, evapotranspiration, cloud ratio, and soil salinity is associated with the decrease in AL. Additionally, AL decreases with a decreasing in precipitation, sunny days, soil moisture, and groundwater quality. It was also found that as LST, evapotranspiration, cloud ratio, elevation, slope, and aspect increase, frost-affected areas increase as well. Furthermore, frost-affected areas increase when precipitation, sunny days, and soil moisture decrease. Finally, we predicted the FS threat for 2030, 2040, 2050, and 2060 using the CA-Markov method. According to the results, the AL will decrease by 0.36% from 2030 to 2060. Between 2030 and 2060, however, the area with very high frost-affected will increase by about 10.64%. In sum, this study accentuates the critical impacts of climate change on the FS in the region. Our findings and proposed methods could be helpful for researchers to model and quantify the climate change impacts on the FS in different regions and periods." @default.
- W4317433467 created "2023-01-19" @default.
- W4317433467 creator A5003656810 @default.
- W4317433467 creator A5056473809 @default.
- W4317433467 creator A5063843468 @default.
- W4317433467 creator A5068124992 @default.
- W4317433467 creator A5074601555 @default.
- W4317433467 date "2023-01-19" @default.
- W4317433467 modified "2023-09-30" @default.
- W4317433467 title "An integrated approach of remote sensing and geospatial analysis for modeling and predicting the impacts of climate change on food security" @default.
- W4317433467 cites W116513487 @default.
- W4317433467 cites W1870246185 @default.
- W4317433467 cites W1975768883 @default.
- W4317433467 cites W1977271893 @default.
- W4317433467 cites W1980833785 @default.
- W4317433467 cites W1990485686 @default.
- W4317433467 cites W2004140201 @default.
- W4317433467 cites W2076125989 @default.
- W4317433467 cites W2086627261 @default.
- W4317433467 cites W2099713825 @default.
- W4317433467 cites W2164528141 @default.
- W4317433467 cites W2321989211 @default.
- W4317433467 cites W2337583920 @default.
- W4317433467 cites W2413554747 @default.
- W4317433467 cites W2551824320 @default.
- W4317433467 cites W2624472554 @default.
- W4317433467 cites W2745131289 @default.
- W4317433467 cites W2758068134 @default.
- W4317433467 cites W2758393630 @default.
- W4317433467 cites W2770974170 @default.
- W4317433467 cites W2792723426 @default.
- W4317433467 cites W2811452967 @default.
- W4317433467 cites W2883131067 @default.
- W4317433467 cites W2890225206 @default.
- W4317433467 cites W2890443177 @default.
- W4317433467 cites W2899101283 @default.
- W4317433467 cites W2899893533 @default.
- W4317433467 cites W2901762107 @default.
- W4317433467 cites W2902880055 @default.
- W4317433467 cites W2905025883 @default.
- W4317433467 cites W2905441528 @default.
- W4317433467 cites W2911016401 @default.
- W4317433467 cites W2913065079 @default.
- W4317433467 cites W2919115771 @default.
- W4317433467 cites W2920089766 @default.
- W4317433467 cites W2934304630 @default.
- W4317433467 cites W2947316228 @default.
- W4317433467 cites W2973451381 @default.
- W4317433467 cites W2983376237 @default.
- W4317433467 cites W2998797157 @default.
- W4317433467 cites W3006566784 @default.
- W4317433467 cites W3011182034 @default.
- W4317433467 cites W3013684001 @default.
- W4317433467 cites W3020380966 @default.
- W4317433467 cites W3025575411 @default.
- W4317433467 cites W3028076608 @default.
- W4317433467 cites W3047753350 @default.
- W4317433467 cites W3081407997 @default.
- W4317433467 cites W3088154325 @default.
- W4317433467 cites W3088384284 @default.
- W4317433467 cites W3088604489 @default.
- W4317433467 cites W3091943187 @default.
- W4317433467 cites W3093822742 @default.
- W4317433467 cites W3108454708 @default.
- W4317433467 cites W3113354257 @default.
- W4317433467 cites W3115990005 @default.
- W4317433467 cites W3126457124 @default.
- W4317433467 cites W3130814842 @default.
- W4317433467 cites W3135698771 @default.
- W4317433467 cites W3148632046 @default.
- W4317433467 cites W3149699174 @default.
- W4317433467 cites W3156943756 @default.
- W4317433467 cites W3158143693 @default.
- W4317433467 cites W3158646833 @default.
- W4317433467 cites W3161661366 @default.
- W4317433467 cites W3175575756 @default.
- W4317433467 cites W3186434832 @default.
- W4317433467 cites W3186785364 @default.
- W4317433467 cites W3193810143 @default.
- W4317433467 cites W3198376164 @default.
- W4317433467 cites W3200502615 @default.
- W4317433467 cites W3202634119 @default.
- W4317433467 cites W3214282182 @default.
- W4317433467 cites W3217264867 @default.
- W4317433467 cites W4200096241 @default.
- W4317433467 cites W4210548402 @default.
- W4317433467 cites W4229013467 @default.
- W4317433467 cites W4248532401 @default.
- W4317433467 cites W4281643983 @default.
- W4317433467 cites W4283078450 @default.
- W4317433467 cites W4283701927 @default.
- W4317433467 cites W4286240438 @default.
- W4317433467 cites W4287148520 @default.
- W4317433467 doi "https://doi.org/10.1038/s41598-023-28244-5" @default.
- W4317433467 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36658205" @default.
- W4317433467 hasPublicationYear "2023" @default.
- W4317433467 type Work @default.
- W4317433467 citedByCount "7" @default.
- W4317433467 countsByYear W43174334672023 @default.
- W4317433467 crossrefType "journal-article" @default.