Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317435066> ?p ?o ?g. }
- W4317435066 endingPage "943" @default.
- W4317435066 startingPage "943" @default.
- W4317435066 abstract "In this paper, an artificial neural network (ANN) model is proposed to predict the hydration process of a new alternative binder. This model overcomes the lack of input parameters of physical models, providing a realistic explanation with few inputs and fast calculations. Indeed, four mortars are studied based on ordinary Portland cement (CEM I), cement with limited environmental impact (CEM III), and glass powder (GP) as the cement substitution. These mortars are named CEM I + GP and CEM III + GP. The properties of the mortars are characterized, and their life cycle assessment (LCA) is established. Indeed, a decrease in porosity is observed at 90 days by 4.6%, 2.5%, 12.4%, and 7.9% compared to those of 3 days for CEMI, CEMIII, CEMI + GP, and CEMIII + GP, respectively. In addition, the use of GP allows for reducing the mechanical strength in the short term. At 90 days, CEMI + GP and CEMIII + GP present a decrease of about 28% and 57% in compressive strength compared to CEMI and CEMIII, respectively. Nevertheless, strength does not cease increasing with the curing time, due to the continuous pozzolanic reactions between Ca(OH)2 and silica contained in GP and slag present in CEMIII as demonstrated by the thermo-gravimetrical (TG) analysis. To summarize, CEMIII mortar provides similar performance compared to mortar with CEMI + GP in the long term. This can later be used in the construction sector and particularly in prefabricated structural elements. Moreover, the ANN model used to predict the heat of hydration provides a similar result compared to the experiment, with a resulting R² of 0.997, 0.968, 0.968, and 0.921 for CEMI, CEMIII, CEMI + GP, and CEMIII + GP, respectively, and allows for identifying the different hydration modes of the investigated mortars. The proposed ANN model will allow cement manufacturers to quickly identify the different hydration modes of new binders by using only the heat of hydration test as an input parameter." @default.
- W4317435066 created "2023-01-19" @default.
- W4317435066 creator A5004763924 @default.
- W4317435066 creator A5007020447 @default.
- W4317435066 creator A5048694672 @default.
- W4317435066 creator A5048947133 @default.
- W4317435066 creator A5051307675 @default.
- W4317435066 date "2023-01-19" @default.
- W4317435066 modified "2023-10-17" @default.
- W4317435066 title "Insight into the Behavior of Mortars Containing Glass Powder: An Artificial Neural Network Analysis Approach to Classify the Hydration Modes" @default.
- W4317435066 cites W1688175730 @default.
- W4317435066 cites W1970843794 @default.
- W4317435066 cites W1974148090 @default.
- W4317435066 cites W1983577515 @default.
- W4317435066 cites W1986552847 @default.
- W4317435066 cites W1994306681 @default.
- W4317435066 cites W1998163585 @default.
- W4317435066 cites W1999158698 @default.
- W4317435066 cites W2002460384 @default.
- W4317435066 cites W2011192732 @default.
- W4317435066 cites W2018271949 @default.
- W4317435066 cites W2034369123 @default.
- W4317435066 cites W2037264809 @default.
- W4317435066 cites W2041186610 @default.
- W4317435066 cites W2042052953 @default.
- W4317435066 cites W2044980229 @default.
- W4317435066 cites W2049984966 @default.
- W4317435066 cites W2059521108 @default.
- W4317435066 cites W2066646214 @default.
- W4317435066 cites W2070572570 @default.
- W4317435066 cites W2071089851 @default.
- W4317435066 cites W2092582124 @default.
- W4317435066 cites W2099298362 @default.
- W4317435066 cites W2104159482 @default.
- W4317435066 cites W2105194140 @default.
- W4317435066 cites W2118550358 @default.
- W4317435066 cites W2145883834 @default.
- W4317435066 cites W2148521521 @default.
- W4317435066 cites W2322130781 @default.
- W4317435066 cites W2476879142 @default.
- W4317435066 cites W2560033584 @default.
- W4317435066 cites W2566254224 @default.
- W4317435066 cites W2611348901 @default.
- W4317435066 cites W2741683712 @default.
- W4317435066 cites W2768568631 @default.
- W4317435066 cites W2883654615 @default.
- W4317435066 cites W2902890195 @default.
- W4317435066 cites W2905163589 @default.
- W4317435066 cites W2916855827 @default.
- W4317435066 cites W2953504600 @default.
- W4317435066 cites W2962802528 @default.
- W4317435066 cites W2971622111 @default.
- W4317435066 cites W2981869606 @default.
- W4317435066 cites W2997120610 @default.
- W4317435066 cites W3002303921 @default.
- W4317435066 cites W3003695670 @default.
- W4317435066 cites W3005691798 @default.
- W4317435066 cites W3009211770 @default.
- W4317435066 cites W3013861953 @default.
- W4317435066 cites W3084781860 @default.
- W4317435066 cites W3089846136 @default.
- W4317435066 cites W3090628485 @default.
- W4317435066 cites W3092312941 @default.
- W4317435066 cites W3092421926 @default.
- W4317435066 cites W3093412624 @default.
- W4317435066 cites W3096177927 @default.
- W4317435066 cites W3112319474 @default.
- W4317435066 cites W3134831403 @default.
- W4317435066 cites W3135602745 @default.
- W4317435066 cites W3139196825 @default.
- W4317435066 cites W3174708254 @default.
- W4317435066 cites W3176565722 @default.
- W4317435066 cites W3185131907 @default.
- W4317435066 cites W3195283661 @default.
- W4317435066 cites W3197875858 @default.
- W4317435066 cites W320142507 @default.
- W4317435066 cites W3207399138 @default.
- W4317435066 cites W3210863170 @default.
- W4317435066 cites W3213085307 @default.
- W4317435066 cites W3215341000 @default.
- W4317435066 cites W4200202228 @default.
- W4317435066 cites W4206111092 @default.
- W4317435066 cites W4214692304 @default.
- W4317435066 cites W4220831368 @default.
- W4317435066 cites W4221048704 @default.
- W4317435066 cites W4223493845 @default.
- W4317435066 cites W4225939461 @default.
- W4317435066 cites W4285404877 @default.
- W4317435066 cites W4307549822 @default.
- W4317435066 cites W4313497962 @default.
- W4317435066 cites W67594468 @default.
- W4317435066 doi "https://doi.org/10.3390/ma16030943" @default.
- W4317435066 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36769950" @default.
- W4317435066 hasPublicationYear "2023" @default.
- W4317435066 type Work @default.
- W4317435066 citedByCount "3" @default.
- W4317435066 countsByYear W43174350662023 @default.
- W4317435066 crossrefType "journal-article" @default.