Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317435891> ?p ?o ?g. }
- W4317435891 endingPage "308" @default.
- W4317435891 startingPage "308" @default.
- W4317435891 abstract "The presence of non-biomedical foreign objects (NBFO), such as coins, buttons and jewelry, and biomedical foreign objects (BFO), such as medical tubes and devices in chest X-rays (CXRs), make accurate interpretation difficult, as they do not indicate known biological abnormalities like excess fluids, tuberculosis (TB) or cysts. Such foreign objects need to be detected, localized, categorized as either NBFO or BFO, and removed from CXR or highlighted in CXR for effective abnormality analysis. Very specifically, NBFOs can adversely impact the process, as typical machine learning algorithms would consider these objects to be biological abnormalities producing false-positive cases. It holds true for BFOs in CXRs. This paper examines detailed discussions on numerous clinical reports in addition to computer-aided detection (CADe) with diagnosis (CADx) tools, where both shallow learning and deep learning algorithms are applied. Our discussion reflects the importance of accurately detecting, isolating, classifying, and either removing or highlighting NBFOs and BFOs in CXRs by taking 29 peer-reviewed research reports and articles into account." @default.
- W4317435891 created "2023-01-19" @default.
- W4317435891 creator A5019267104 @default.
- W4317435891 creator A5087790566 @default.
- W4317435891 date "2023-01-19" @default.
- W4317435891 modified "2023-09-27" @default.
- W4317435891 title "Analyzing Overlaid Foreign Objects in Chest X-rays—Clinical Significance and Artificial Intelligence Tools" @default.
- W4317435891 cites W1973795415 @default.
- W4317435891 cites W1975670089 @default.
- W4317435891 cites W2013164670 @default.
- W4317435891 cites W2016818221 @default.
- W4317435891 cites W2019566532 @default.
- W4317435891 cites W2022373920 @default.
- W4317435891 cites W2027285223 @default.
- W4317435891 cites W2034261789 @default.
- W4317435891 cites W2035107885 @default.
- W4317435891 cites W2040704939 @default.
- W4317435891 cites W2044806382 @default.
- W4317435891 cites W2046720590 @default.
- W4317435891 cites W2051153656 @default.
- W4317435891 cites W2058060378 @default.
- W4317435891 cites W2073329418 @default.
- W4317435891 cites W2073982987 @default.
- W4317435891 cites W2114800913 @default.
- W4317435891 cites W2118362461 @default.
- W4317435891 cites W2125498850 @default.
- W4317435891 cites W2125566992 @default.
- W4317435891 cites W2142333770 @default.
- W4317435891 cites W2152772232 @default.
- W4317435891 cites W2168506291 @default.
- W4317435891 cites W2221315997 @default.
- W4317435891 cites W2257708739 @default.
- W4317435891 cites W2319508017 @default.
- W4317435891 cites W2549226425 @default.
- W4317435891 cites W2609021473 @default.
- W4317435891 cites W2638344017 @default.
- W4317435891 cites W2770511975 @default.
- W4317435891 cites W2800411755 @default.
- W4317435891 cites W2810767764 @default.
- W4317435891 cites W2837681925 @default.
- W4317435891 cites W2906806357 @default.
- W4317435891 cites W2962838801 @default.
- W4317435891 cites W3003765703 @default.
- W4317435891 cites W3011716991 @default.
- W4317435891 cites W3046462609 @default.
- W4317435891 cites W3046510185 @default.
- W4317435891 cites W3082905589 @default.
- W4317435891 cites W3164820705 @default.
- W4317435891 cites W4210347885 @default.
- W4317435891 cites W4224104512 @default.
- W4317435891 cites W4245661328 @default.
- W4317435891 cites W4285153860 @default.
- W4317435891 doi "https://doi.org/10.3390/healthcare11030308" @default.
- W4317435891 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36766883" @default.
- W4317435891 hasPublicationYear "2023" @default.
- W4317435891 type Work @default.
- W4317435891 citedByCount "2" @default.
- W4317435891 countsByYear W43174358912023 @default.
- W4317435891 crossrefType "journal-article" @default.
- W4317435891 hasAuthorship W4317435891A5019267104 @default.
- W4317435891 hasAuthorship W4317435891A5087790566 @default.
- W4317435891 hasBestOaLocation W43174358911 @default.
- W4317435891 hasConcept C111919701 @default.
- W4317435891 hasConcept C118552586 @default.
- W4317435891 hasConcept C126838900 @default.
- W4317435891 hasConcept C141071460 @default.
- W4317435891 hasConcept C154945302 @default.
- W4317435891 hasConcept C199360897 @default.
- W4317435891 hasConcept C2779664554 @default.
- W4317435891 hasConcept C41008148 @default.
- W4317435891 hasConcept C50965678 @default.
- W4317435891 hasConcept C527412718 @default.
- W4317435891 hasConcept C71924100 @default.
- W4317435891 hasConcept C98045186 @default.
- W4317435891 hasConceptScore W4317435891C111919701 @default.
- W4317435891 hasConceptScore W4317435891C118552586 @default.
- W4317435891 hasConceptScore W4317435891C126838900 @default.
- W4317435891 hasConceptScore W4317435891C141071460 @default.
- W4317435891 hasConceptScore W4317435891C154945302 @default.
- W4317435891 hasConceptScore W4317435891C199360897 @default.
- W4317435891 hasConceptScore W4317435891C2779664554 @default.
- W4317435891 hasConceptScore W4317435891C41008148 @default.
- W4317435891 hasConceptScore W4317435891C50965678 @default.
- W4317435891 hasConceptScore W4317435891C527412718 @default.
- W4317435891 hasConceptScore W4317435891C71924100 @default.
- W4317435891 hasConceptScore W4317435891C98045186 @default.
- W4317435891 hasIssue "3" @default.
- W4317435891 hasLocation W43174358911 @default.
- W4317435891 hasLocation W43174358912 @default.
- W4317435891 hasLocation W43174358913 @default.
- W4317435891 hasOpenAccess W4317435891 @default.
- W4317435891 hasPrimaryLocation W43174358911 @default.
- W4317435891 hasRelatedWork W1488694185 @default.
- W4317435891 hasRelatedWork W2020093274 @default.
- W4317435891 hasRelatedWork W2032067164 @default.
- W4317435891 hasRelatedWork W2049214470 @default.
- W4317435891 hasRelatedWork W2507927110 @default.
- W4317435891 hasRelatedWork W2748952813 @default.