Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317436219> ?p ?o ?g. }
- W4317436219 endingPage "583" @default.
- W4317436219 startingPage "583" @default.
- W4317436219 abstract "The increased variety of satellite remote sensing platforms creates opportunities for estimating tropical forest diversity needed for environmental decision-making. As little as 10% of the original seasonally dry tropical forest (SDTF) remains for Ecuador, Peru, and Colombia. Remnant forests show high rates of species endemism, but experience degradation from climate change, wood-cutting, and livestock-grazing. Forest census data provide a vital resource for examining remote sensing methods to estimate diversity levels. We used spatially referenced trees ≥5 cm in diameter and simulated 0.10 ha plots measured from a 9 ha SDTF in southwestern Ecuador to compare machine learning (ML) models for six α-diversity indices. We developed 1 m tree canopy height and elevation models from stem mapped trees, at a scale conventionally derived from light detection and ranging (LiDAR). We then used an ensemble ML approach comparing single- and combined-sensor models from RapidEye, Sentinel-2 and interpolated canopy height and topography surfaces. Validation data showed that combined models often outperformed single-sensor approaches. Combined sensor and model ensembles for tree species richness, Shannon’s H, inverse Simpson’s, unbiased Simpson’s, and Fisher’s alpha indices typically showed lower root mean squared error (RMSE) and increased goodness of fit (R2). Piélou’s J, a measure of evenness, was poorly predicted. Mapped tree species richness (R2 = 0.54, F = 27.3, p = <0.001) and Shannon’s H′ (R2 = 0.54, F = 26.9, p = <0.001) showed the most favorable agreement with field validation observations (n = 25). Small-scale model experiments revealed essential relationships between dry forest tree diversity and data from multiple satellite sensors with repeated global coverage that can help guide larger-scale biodiversity mapping efforts." @default.
- W4317436219 created "2023-01-19" @default.
- W4317436219 creator A5012821353 @default.
- W4317436219 creator A5014869457 @default.
- W4317436219 creator A5030002547 @default.
- W4317436219 creator A5081825393 @default.
- W4317436219 date "2023-01-18" @default.
- W4317436219 modified "2023-10-07" @default.
- W4317436219 title "Ensemble Machine Learning for Mapping Tree Species Alpha-Diversity Using Multi-Source Satellite Data in an Ecuadorian Seasonally Dry Forest" @default.
- W4317436219 cites W1973503268 @default.
- W4317436219 cites W1981970518 @default.
- W4317436219 cites W1984284869 @default.
- W4317436219 cites W1985555755 @default.
- W4317436219 cites W1995875735 @default.
- W4317436219 cites W1999277453 @default.
- W4317436219 cites W2000613913 @default.
- W4317436219 cites W2002291348 @default.
- W4317436219 cites W2007873570 @default.
- W4317436219 cites W2014897524 @default.
- W4317436219 cites W2027694964 @default.
- W4317436219 cites W2062056202 @default.
- W4317436219 cites W2065995294 @default.
- W4317436219 cites W2066686198 @default.
- W4317436219 cites W2077707413 @default.
- W4317436219 cites W2087189381 @default.
- W4317436219 cites W2089441588 @default.
- W4317436219 cites W2099410216 @default.
- W4317436219 cites W2101077235 @default.
- W4317436219 cites W2104767862 @default.
- W4317436219 cites W2113397378 @default.
- W4317436219 cites W2113410727 @default.
- W4317436219 cites W2114148779 @default.
- W4317436219 cites W2115014939 @default.
- W4317436219 cites W2118778337 @default.
- W4317436219 cites W2120474334 @default.
- W4317436219 cites W2123932570 @default.
- W4317436219 cites W2136658108 @default.
- W4317436219 cites W2146368895 @default.
- W4317436219 cites W2149087410 @default.
- W4317436219 cites W2153534417 @default.
- W4317436219 cites W2157950445 @default.
- W4317436219 cites W2161815745 @default.
- W4317436219 cites W2167246809 @default.
- W4317436219 cites W2194958479 @default.
- W4317436219 cites W2491438047 @default.
- W4317436219 cites W2517541898 @default.
- W4317436219 cites W2779147688 @default.
- W4317436219 cites W2790341695 @default.
- W4317436219 cites W2871625235 @default.
- W4317436219 cites W2890500832 @default.
- W4317436219 cites W2908023505 @default.
- W4317436219 cites W2911964244 @default.
- W4317436219 cites W2914616550 @default.
- W4317436219 cites W2945433211 @default.
- W4317436219 cites W2951147814 @default.
- W4317436219 cites W2954176626 @default.
- W4317436219 cites W2969711797 @default.
- W4317436219 cites W3003509779 @default.
- W4317436219 cites W3036459560 @default.
- W4317436219 cites W3038027092 @default.
- W4317436219 cites W3094797852 @default.
- W4317436219 cites W3137858141 @default.
- W4317436219 cites W3188562469 @default.
- W4317436219 cites W3194112819 @default.
- W4317436219 cites W3194897643 @default.
- W4317436219 cites W3198347787 @default.
- W4317436219 cites W3201854514 @default.
- W4317436219 cites W4214738075 @default.
- W4317436219 cites W4220901123 @default.
- W4317436219 cites W4239510810 @default.
- W4317436219 cites W4252863041 @default.
- W4317436219 cites W4294541781 @default.
- W4317436219 doi "https://doi.org/10.3390/rs15030583" @default.
- W4317436219 hasPublicationYear "2023" @default.
- W4317436219 type Work @default.
- W4317436219 citedByCount "2" @default.
- W4317436219 countsByYear W43174362192023 @default.
- W4317436219 crossrefType "journal-article" @default.
- W4317436219 hasAuthorship W4317436219A5012821353 @default.
- W4317436219 hasAuthorship W4317436219A5014869457 @default.
- W4317436219 hasAuthorship W4317436219A5030002547 @default.
- W4317436219 hasAuthorship W4317436219A5081825393 @default.
- W4317436219 hasBestOaLocation W43174362191 @default.
- W4317436219 hasConcept C101000010 @default.
- W4317436219 hasConcept C105795698 @default.
- W4317436219 hasConcept C108216600 @default.
- W4317436219 hasConcept C139945424 @default.
- W4317436219 hasConcept C18903297 @default.
- W4317436219 hasConcept C205649164 @default.
- W4317436219 hasConcept C2778755073 @default.
- W4317436219 hasConcept C33923547 @default.
- W4317436219 hasConcept C39432304 @default.
- W4317436219 hasConcept C51399673 @default.
- W4317436219 hasConcept C53565203 @default.
- W4317436219 hasConcept C58640448 @default.
- W4317436219 hasConcept C62649853 @default.
- W4317436219 hasConcept C86803240 @default.
- W4317436219 hasConcept C97137747 @default.