Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317438861> ?p ?o ?g. }
- W4317438861 abstract "There has been much recent interest in modifying Bayesian inference for misspecified models so that it is useful for specific purposes. One popular modified Bayesian inference method is “cutting feedback” which can be used when the model consists of a number of coupled modules, with only some of the modules being misspecified. Cutting feedback methods represent the full posterior distribution in terms of conditional and sequential components, and then modify some terms in such a representation based on the modular structure for specification or computation of a modified posterior distribution. The main goal of this is to avoid contamination of inferences for parameters of interest by misspecified modules. Computation for cut posterior distributions is challenging, and here we consider cutting feedback for likelihood-free inference based on Gaussian mixture approximations to the joint distribution of parameters and data summary statistics. We exploit the fact that marginal and conditional distributions of a Gaussian mixture are Gaussian mixtures to give explicit approximations to marginal or conditional posterior distributions so that we can easily approximate cut posterior analyses. The mixture approach allows repeated approximation of posterior distributions for different data based on a single mixture fit. This is important for model checks which aid in the decision of whether to “cut”. A semi-modular approach to likelihood-free inference where feedback is partially cut is also developed. The benefits of the method are illustrated on two challenging examples, a collective cell spreading model and a continuous time model for asset returns with jumps." @default.
- W4317438861 created "2023-01-19" @default.
- W4317438861 creator A5005139027 @default.
- W4317438861 creator A5026761605 @default.
- W4317438861 creator A5044778185 @default.
- W4317438861 creator A5070517866 @default.
- W4317438861 creator A5074009517 @default.
- W4317438861 date "2023-01-19" @default.
- W4317438861 modified "2023-09-23" @default.
- W4317438861 title "Modularized Bayesian analyses and cutting feedback in likelihood-free inference" @default.
- W4317438861 cites W1524136152 @default.
- W4317438861 cites W1854348894 @default.
- W4317438861 cites W1911375530 @default.
- W4317438861 cites W2020830643 @default.
- W4317438861 cites W2033178790 @default.
- W4317438861 cites W2041870589 @default.
- W4317438861 cites W2043462999 @default.
- W4317438861 cites W2053332694 @default.
- W4317438861 cites W2066898390 @default.
- W4317438861 cites W2092124742 @default.
- W4317438861 cites W2098613108 @default.
- W4317438861 cites W2104320201 @default.
- W4317438861 cites W2112214852 @default.
- W4317438861 cites W2136536070 @default.
- W4317438861 cites W2165659971 @default.
- W4317438861 cites W2519132385 @default.
- W4317438861 cites W2593094133 @default.
- W4317438861 cites W2895152177 @default.
- W4317438861 cites W2950412944 @default.
- W4317438861 cites W2962894765 @default.
- W4317438861 cites W2963218043 @default.
- W4317438861 cites W2963495973 @default.
- W4317438861 cites W2963723232 @default.
- W4317438861 cites W2999898255 @default.
- W4317438861 cites W3003656020 @default.
- W4317438861 cites W3012517430 @default.
- W4317438861 cites W3022264239 @default.
- W4317438861 cites W3033625110 @default.
- W4317438861 cites W3033939064 @default.
- W4317438861 cites W3086988147 @default.
- W4317438861 cites W3095206569 @default.
- W4317438861 cites W3098057351 @default.
- W4317438861 cites W3099663651 @default.
- W4317438861 cites W3123825128 @default.
- W4317438861 cites W3154246438 @default.
- W4317438861 doi "https://doi.org/10.1007/s11222-023-10207-5" @default.
- W4317438861 hasPublicationYear "2023" @default.
- W4317438861 type Work @default.
- W4317438861 citedByCount "1" @default.
- W4317438861 countsByYear W43174388612023 @default.
- W4317438861 crossrefType "journal-article" @default.
- W4317438861 hasAuthorship W4317438861A5005139027 @default.
- W4317438861 hasAuthorship W4317438861A5026761605 @default.
- W4317438861 hasAuthorship W4317438861A5044778185 @default.
- W4317438861 hasAuthorship W4317438861A5070517866 @default.
- W4317438861 hasAuthorship W4317438861A5074009517 @default.
- W4317438861 hasBestOaLocation W43174388612 @default.
- W4317438861 hasConcept C105795698 @default.
- W4317438861 hasConcept C107673813 @default.
- W4317438861 hasConcept C11413529 @default.
- W4317438861 hasConcept C154945302 @default.
- W4317438861 hasConcept C160234255 @default.
- W4317438861 hasConcept C2776214188 @default.
- W4317438861 hasConcept C2779377595 @default.
- W4317438861 hasConcept C33923547 @default.
- W4317438861 hasConcept C41008148 @default.
- W4317438861 hasConcept C43555835 @default.
- W4317438861 hasConcept C57830394 @default.
- W4317438861 hasConcept C61224824 @default.
- W4317438861 hasConcept C95923904 @default.
- W4317438861 hasConceptScore W4317438861C105795698 @default.
- W4317438861 hasConceptScore W4317438861C107673813 @default.
- W4317438861 hasConceptScore W4317438861C11413529 @default.
- W4317438861 hasConceptScore W4317438861C154945302 @default.
- W4317438861 hasConceptScore W4317438861C160234255 @default.
- W4317438861 hasConceptScore W4317438861C2776214188 @default.
- W4317438861 hasConceptScore W4317438861C2779377595 @default.
- W4317438861 hasConceptScore W4317438861C33923547 @default.
- W4317438861 hasConceptScore W4317438861C41008148 @default.
- W4317438861 hasConceptScore W4317438861C43555835 @default.
- W4317438861 hasConceptScore W4317438861C57830394 @default.
- W4317438861 hasConceptScore W4317438861C61224824 @default.
- W4317438861 hasConceptScore W4317438861C95923904 @default.
- W4317438861 hasFunder F4320334704 @default.
- W4317438861 hasFunder F4320338184 @default.
- W4317438861 hasIssue "1" @default.
- W4317438861 hasLocation W43174388611 @default.
- W4317438861 hasLocation W43174388612 @default.
- W4317438861 hasOpenAccess W4317438861 @default.
- W4317438861 hasPrimaryLocation W43174388611 @default.
- W4317438861 hasRelatedWork W1911375530 @default.
- W4317438861 hasRelatedWork W2003936022 @default.
- W4317438861 hasRelatedWork W3008255512 @default.
- W4317438861 hasRelatedWork W3014566702 @default.
- W4317438861 hasRelatedWork W3145273302 @default.
- W4317438861 hasRelatedWork W4225792957 @default.
- W4317438861 hasRelatedWork W4317438861 @default.
- W4317438861 hasRelatedWork W4321464540 @default.
- W4317438861 hasRelatedWork W4323321461 @default.
- W4317438861 hasRelatedWork W4221155165 @default.