Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317478832> ?p ?o ?g. }
- W4317478832 endingPage "e100666" @default.
- W4317478832 startingPage "e100666" @default.
- W4317478832 abstract "Objectives Survival machine learning (ML) has been suggested as a useful approach for forecasting future events, but a growing concern exists that ML models have the potential to cause racial disparities through the data used to train them. This study aims to develop race/ethnicity-specific survival ML models for Hispanic and black women diagnosed with breast cancer to examine whether race/ethnicity-specific ML models outperform the general models trained with all races/ethnicity data. Methods We used the data from the US National Cancer Institute’s Surveillance, Epidemiology and End Results programme registries. We developed the Hispanic-specific and black-specific models and compared them with the general model using the Cox proportional-hazards model, Gradient Boost Tree, survival tree and survival support vector machine. Results A total of 322 348 female patients who had breast cancer diagnoses between 1 January 2000 and 31 December 2017 were identified. The race/ethnicity-specific models for Hispanic and black women consistently outperformed the general model when predicting the outcomes of specific race/ethnicity. Discussion Accurately predicting the survival outcome of a patient is critical in determining treatment options and providing appropriate cancer care. The high-performing models developed in this study can contribute to providing individualised oncology care and improving the survival outcome of black and Hispanic women. Conclusion Predicting the individualised survival outcome of breast cancer can provide the evidence necessary for determining treatment options and high-quality, patient-centred cancer care delivery for under-represented populations. Also, the race/ethnicity-specific ML models can mitigate representation bias and contribute to addressing health disparities." @default.
- W4317478832 created "2023-01-20" @default.
- W4317478832 creator A5029634063 @default.
- W4317478832 creator A5059147004 @default.
- W4317478832 creator A5068654162 @default.
- W4317478832 creator A5089396392 @default.
- W4317478832 date "2023-01-01" @default.
- W4317478832 modified "2023-10-18" @default.
- W4317478832 title "Evaluation of race/ethnicity-specific survival machine learning models for Hispanic and Black patients with breast cancer" @default.
- W4317478832 cites W1519642534 @default.
- W4317478832 cites W1678356000 @default.
- W4317478832 cites W1965801346 @default.
- W4317478832 cites W1980258332 @default.
- W4317478832 cites W2013134830 @default.
- W4317478832 cites W2026706435 @default.
- W4317478832 cites W2033609349 @default.
- W4317478832 cites W2056336900 @default.
- W4317478832 cites W2069686684 @default.
- W4317478832 cites W2070493638 @default.
- W4317478832 cites W2111903149 @default.
- W4317478832 cites W2115588507 @default.
- W4317478832 cites W2140651090 @default.
- W4317478832 cites W2140971235 @default.
- W4317478832 cites W2172378403 @default.
- W4317478832 cites W2530755795 @default.
- W4317478832 cites W2601868035 @default.
- W4317478832 cites W2753919178 @default.
- W4317478832 cites W2788541143 @default.
- W4317478832 cites W2806453502 @default.
- W4317478832 cites W2899768131 @default.
- W4317478832 cites W2902802452 @default.
- W4317478832 cites W2934399013 @default.
- W4317478832 cites W2969881216 @default.
- W4317478832 cites W2971201970 @default.
- W4317478832 cites W2981869278 @default.
- W4317478832 cites W3119005666 @default.
- W4317478832 cites W4226400409 @default.
- W4317478832 cites W4239667773 @default.
- W4317478832 cites W4248625434 @default.
- W4317478832 doi "https://doi.org/10.1136/bmjhci-2022-100666" @default.
- W4317478832 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36653067" @default.
- W4317478832 hasPublicationYear "2023" @default.
- W4317478832 type Work @default.
- W4317478832 citedByCount "0" @default.
- W4317478832 crossrefType "journal-article" @default.
- W4317478832 hasAuthorship W4317478832A5029634063 @default.
- W4317478832 hasAuthorship W4317478832A5059147004 @default.
- W4317478832 hasAuthorship W4317478832A5068654162 @default.
- W4317478832 hasAuthorship W4317478832A5089396392 @default.
- W4317478832 hasBestOaLocation W43174788321 @default.
- W4317478832 hasConcept C10515644 @default.
- W4317478832 hasConcept C107130276 @default.
- W4317478832 hasConcept C121608353 @default.
- W4317478832 hasConcept C126322002 @default.
- W4317478832 hasConcept C137403100 @default.
- W4317478832 hasConcept C143998085 @default.
- W4317478832 hasConcept C144024400 @default.
- W4317478832 hasConcept C149923435 @default.
- W4317478832 hasConcept C19165224 @default.
- W4317478832 hasConcept C2778527826 @default.
- W4317478832 hasConcept C50382708 @default.
- W4317478832 hasConcept C530470458 @default.
- W4317478832 hasConcept C59822182 @default.
- W4317478832 hasConcept C71924100 @default.
- W4317478832 hasConcept C76509639 @default.
- W4317478832 hasConcept C86803240 @default.
- W4317478832 hasConceptScore W4317478832C10515644 @default.
- W4317478832 hasConceptScore W4317478832C107130276 @default.
- W4317478832 hasConceptScore W4317478832C121608353 @default.
- W4317478832 hasConceptScore W4317478832C126322002 @default.
- W4317478832 hasConceptScore W4317478832C137403100 @default.
- W4317478832 hasConceptScore W4317478832C143998085 @default.
- W4317478832 hasConceptScore W4317478832C144024400 @default.
- W4317478832 hasConceptScore W4317478832C149923435 @default.
- W4317478832 hasConceptScore W4317478832C19165224 @default.
- W4317478832 hasConceptScore W4317478832C2778527826 @default.
- W4317478832 hasConceptScore W4317478832C50382708 @default.
- W4317478832 hasConceptScore W4317478832C530470458 @default.
- W4317478832 hasConceptScore W4317478832C59822182 @default.
- W4317478832 hasConceptScore W4317478832C71924100 @default.
- W4317478832 hasConceptScore W4317478832C76509639 @default.
- W4317478832 hasConceptScore W4317478832C86803240 @default.
- W4317478832 hasIssue "1" @default.
- W4317478832 hasLocation W43174788321 @default.
- W4317478832 hasLocation W43174788322 @default.
- W4317478832 hasLocation W43174788323 @default.
- W4317478832 hasLocation W43174788324 @default.
- W4317478832 hasOpenAccess W4317478832 @default.
- W4317478832 hasPrimaryLocation W43174788321 @default.
- W4317478832 hasRelatedWork W1554732404 @default.
- W4317478832 hasRelatedWork W2010631330 @default.
- W4317478832 hasRelatedWork W2026784993 @default.
- W4317478832 hasRelatedWork W2581226876 @default.
- W4317478832 hasRelatedWork W3136232645 @default.
- W4317478832 hasRelatedWork W4225121065 @default.
- W4317478832 hasRelatedWork W4225134093 @default.
- W4317478832 hasRelatedWork W4225465365 @default.
- W4317478832 hasRelatedWork W4380269519 @default.