Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317478913> ?p ?o ?g. }
- W4317478913 endingPage "109794" @default.
- W4317478913 startingPage "109794" @default.
- W4317478913 abstract "The past 10 years have seen an explosion of approaches that focus on the study of time-resolved change in functional connectivity (FC). FC characterization among networks at a whole-brain level is frequently termed functional network connectivity (FNC). Time-resolved or dynamic functional network connectivity (dFNC) focuses on the estimation of transient, recurring, whole-brain patterns of FNC. While most approaches in this area have attempted to capture dynamic linear correlation, we are particularly interested in whether explicitly nonlinear relationships, above and beyond linear, are present and contain unique information. This study thus proposes an approach to assess explicitly nonlinear dynamic functional network connectivity (EN dFNC) derived from the relationship among independent component analysis time courses. Linear relationships were removed at each time point to evaluate, typically ignored, explicitly nonlinear dFNC using normalized mutual information (NMI). Simulations showed the proposed method estimated explicitly nonlinearity over time, even within relatively short windows of data. We then, applied our approach on 151 schizophrenia patients, and 163 healthy controls fMRI data and found three unique, highly structured, mostly long-range, functional states that also showed significant group differences. In particular, explicitly nonlinear relationships tend to be more widespread than linear ones. Results also highlighted a state with long range connections to the visual domain, which were significantly reduced in schizophrenia. Overall, this work suggests that quantifying EN dFNC may provide a complementary and potentially valuable tool for studying brain function by exposing relevant variation that is typically ignored." @default.
- W4317478913 created "2023-01-20" @default.
- W4317478913 creator A5005952237 @default.
- W4317478913 creator A5007448357 @default.
- W4317478913 creator A5018920191 @default.
- W4317478913 creator A5024242506 @default.
- W4317478913 creator A5030435608 @default.
- W4317478913 creator A5032850756 @default.
- W4317478913 creator A5038717161 @default.
- W4317478913 creator A5040641409 @default.
- W4317478913 creator A5043671103 @default.
- W4317478913 creator A5050834331 @default.
- W4317478913 creator A5069686854 @default.
- W4317478913 creator A5072488699 @default.
- W4317478913 creator A5076662617 @default.
- W4317478913 creator A5081327890 @default.
- W4317478913 creator A5083359076 @default.
- W4317478913 creator A5091409714 @default.
- W4317478913 date "2023-04-01" @default.
- W4317478913 modified "2023-10-16" @default.
- W4317478913 title "A method for estimating and characterizing explicitly nonlinear dynamic functional network connectivity in resting-state fMRI data" @default.
- W4317478913 cites W1552598564 @default.
- W4317478913 cites W1943480391 @default.
- W4317478913 cites W1976623182 @default.
- W4317478913 cites W1985327120 @default.
- W4317478913 cites W1985593502 @default.
- W4317478913 cites W1999759389 @default.
- W4317478913 cites W2007894316 @default.
- W4317478913 cites W2007919714 @default.
- W4317478913 cites W2022772246 @default.
- W4317478913 cites W2031677665 @default.
- W4317478913 cites W2045127540 @default.
- W4317478913 cites W2058187841 @default.
- W4317478913 cites W2059554831 @default.
- W4317478913 cites W2061564920 @default.
- W4317478913 cites W2080233806 @default.
- W4317478913 cites W2086898440 @default.
- W4317478913 cites W2089495387 @default.
- W4317478913 cites W2091177453 @default.
- W4317478913 cites W2091906388 @default.
- W4317478913 cites W2092658543 @default.
- W4317478913 cites W2095491050 @default.
- W4317478913 cites W2108384452 @default.
- W4317478913 cites W2140343355 @default.
- W4317478913 cites W2142566135 @default.
- W4317478913 cites W2170702893 @default.
- W4317478913 cites W2180423080 @default.
- W4317478913 cites W2768707988 @default.
- W4317478913 cites W2908590807 @default.
- W4317478913 cites W3041591860 @default.
- W4317478913 doi "https://doi.org/10.1016/j.jneumeth.2023.109794" @default.
- W4317478913 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36652974" @default.
- W4317478913 hasPublicationYear "2023" @default.
- W4317478913 type Work @default.
- W4317478913 citedByCount "0" @default.
- W4317478913 crossrefType "journal-article" @default.
- W4317478913 hasAuthorship W4317478913A5005952237 @default.
- W4317478913 hasAuthorship W4317478913A5007448357 @default.
- W4317478913 hasAuthorship W4317478913A5018920191 @default.
- W4317478913 hasAuthorship W4317478913A5024242506 @default.
- W4317478913 hasAuthorship W4317478913A5030435608 @default.
- W4317478913 hasAuthorship W4317478913A5032850756 @default.
- W4317478913 hasAuthorship W4317478913A5038717161 @default.
- W4317478913 hasAuthorship W4317478913A5040641409 @default.
- W4317478913 hasAuthorship W4317478913A5043671103 @default.
- W4317478913 hasAuthorship W4317478913A5050834331 @default.
- W4317478913 hasAuthorship W4317478913A5069686854 @default.
- W4317478913 hasAuthorship W4317478913A5072488699 @default.
- W4317478913 hasAuthorship W4317478913A5076662617 @default.
- W4317478913 hasAuthorship W4317478913A5081327890 @default.
- W4317478913 hasAuthorship W4317478913A5083359076 @default.
- W4317478913 hasAuthorship W4317478913A5091409714 @default.
- W4317478913 hasConcept C119857082 @default.
- W4317478913 hasConcept C120665830 @default.
- W4317478913 hasConcept C121332964 @default.
- W4317478913 hasConcept C13540734 @default.
- W4317478913 hasConcept C14036430 @default.
- W4317478913 hasConcept C152139883 @default.
- W4317478913 hasConcept C153180895 @default.
- W4317478913 hasConcept C154945302 @default.
- W4317478913 hasConcept C15744967 @default.
- W4317478913 hasConcept C158622935 @default.
- W4317478913 hasConcept C159985019 @default.
- W4317478913 hasConcept C163175372 @default.
- W4317478913 hasConcept C169760540 @default.
- W4317478913 hasConcept C192209626 @default.
- W4317478913 hasConcept C192562407 @default.
- W4317478913 hasConcept C199360897 @default.
- W4317478913 hasConcept C204323151 @default.
- W4317478913 hasConcept C2776412080 @default.
- W4317478913 hasConcept C2781312939 @default.
- W4317478913 hasConcept C31258907 @default.
- W4317478913 hasConcept C41008148 @default.
- W4317478913 hasConcept C62520636 @default.
- W4317478913 hasConcept C66324658 @default.
- W4317478913 hasConcept C78458016 @default.
- W4317478913 hasConcept C86803240 @default.
- W4317478913 hasConceptScore W4317478913C119857082 @default.