Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317491737> ?p ?o ?g. }
- W4317491737 endingPage "96" @default.
- W4317491737 startingPage "85" @default.
- W4317491737 abstract "After the outbreak of COVID-19, the interaction of infectious disease systems and social systems has challenged traditional infectious disease modeling methods. Starting from the research purpose and data, researchers improve the structure and data of the compartment model or use agents and AI-based models to solve epidemiological problems. In terms of modeling methods, the researchers use compartment subdivision, dynamic parameters, agent-based model methods, and AI-related methods. In terms of factors studied, the researchers studied 6 categories: human mobility, NPIs, ages, medical resources, human response, and vaccine. The researchers completed the study of factors through modeling methods, to quantitatively analyze the impact of social systems, and put forward their suggestions for the future transmission status of infectious diseases and prevention and control strategies. This review starts with a research structure of research purpose, factor, data, model, and conclusion. focusing on the post-COVID-19 infectious disease prediction simulation research, summarizes various improvement methods, and analyzes matching improvements for various specific research purposes." @default.
- W4317491737 created "2023-01-20" @default.
- W4317491737 creator A5001003199 @default.
- W4317491737 creator A5015106322 @default.
- W4317491737 creator A5022511196 @default.
- W4317491737 creator A5024788105 @default.
- W4317491737 creator A5045410326 @default.
- W4317491737 creator A5052115159 @default.
- W4317491737 creator A5084076968 @default.
- W4317491737 creator A5087906557 @default.
- W4317491737 creator A5088769817 @default.
- W4317491737 date "2023-05-01" @default.
- W4317491737 modified "2023-10-16" @default.
- W4317491737 title "Big data technology in infectious diseases modeling, simulation, and prediction after the COVID-19 outbreak" @default.
- W4317491737 cites W2017630658 @default.
- W4317491737 cites W2111010823 @default.
- W4317491737 cites W2147166346 @default.
- W4317491737 cites W2169108319 @default.
- W4317491737 cites W3008443627 @default.
- W4317491737 cites W3013188135 @default.
- W4317491737 cites W3014866318 @default.
- W4317491737 cites W3015988827 @default.
- W4317491737 cites W3021923959 @default.
- W4317491737 cites W3022210384 @default.
- W4317491737 cites W3023863810 @default.
- W4317491737 cites W3025090814 @default.
- W4317491737 cites W3025654679 @default.
- W4317491737 cites W3026175677 @default.
- W4317491737 cites W3028509400 @default.
- W4317491737 cites W3033386675 @default.
- W4317491737 cites W3036932834 @default.
- W4317491737 cites W3043662404 @default.
- W4317491737 cites W3044468596 @default.
- W4317491737 cites W3045248985 @default.
- W4317491737 cites W3046177089 @default.
- W4317491737 cites W3048844313 @default.
- W4317491737 cites W3055859021 @default.
- W4317491737 cites W3082370774 @default.
- W4317491737 cites W3087677177 @default.
- W4317491737 cites W3090859916 @default.
- W4317491737 cites W3095263534 @default.
- W4317491737 cites W3098435366 @default.
- W4317491737 cites W3099011804 @default.
- W4317491737 cites W3099479832 @default.
- W4317491737 cites W3101335933 @default.
- W4317491737 cites W3102828207 @default.
- W4317491737 cites W3106991655 @default.
- W4317491737 cites W3109596041 @default.
- W4317491737 cites W3113001290 @default.
- W4317491737 cites W3118238415 @default.
- W4317491737 cites W3121139527 @default.
- W4317491737 cites W3126546596 @default.
- W4317491737 cites W3129940998 @default.
- W4317491737 cites W3134208712 @default.
- W4317491737 cites W3134796676 @default.
- W4317491737 cites W3135231315 @default.
- W4317491737 cites W3135257712 @default.
- W4317491737 cites W3135770674 @default.
- W4317491737 cites W3136588845 @default.
- W4317491737 cites W3139500345 @default.
- W4317491737 cites W3147662516 @default.
- W4317491737 cites W3181360113 @default.
- W4317491737 cites W3186633320 @default.
- W4317491737 cites W3216174433 @default.
- W4317491737 cites W3217176151 @default.
- W4317491737 cites W4283800658 @default.
- W4317491737 cites W4294838377 @default.
- W4317491737 doi "https://doi.org/10.1016/j.imed.2023.01.002" @default.
- W4317491737 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36694623" @default.
- W4317491737 hasPublicationYear "2023" @default.
- W4317491737 type Work @default.
- W4317491737 citedByCount "0" @default.
- W4317491737 crossrefType "journal-article" @default.
- W4317491737 hasAuthorship W4317491737A5001003199 @default.
- W4317491737 hasAuthorship W4317491737A5015106322 @default.
- W4317491737 hasAuthorship W4317491737A5022511196 @default.
- W4317491737 hasAuthorship W4317491737A5024788105 @default.
- W4317491737 hasAuthorship W4317491737A5045410326 @default.
- W4317491737 hasAuthorship W4317491737A5052115159 @default.
- W4317491737 hasAuthorship W4317491737A5084076968 @default.
- W4317491737 hasAuthorship W4317491737A5087906557 @default.
- W4317491737 hasAuthorship W4317491737A5088769817 @default.
- W4317491737 hasBestOaLocation W43174917371 @default.
- W4317491737 hasConcept C112930515 @default.
- W4317491737 hasConcept C116675565 @default.
- W4317491737 hasConcept C124101348 @default.
- W4317491737 hasConcept C127413603 @default.
- W4317491737 hasConcept C142724271 @default.
- W4317491737 hasConcept C159047783 @default.
- W4317491737 hasConcept C165064840 @default.
- W4317491737 hasConcept C2522767166 @default.
- W4317491737 hasConcept C2779134260 @default.
- W4317491737 hasConcept C3008058167 @default.
- W4317491737 hasConcept C41008148 @default.
- W4317491737 hasConcept C42475967 @default.
- W4317491737 hasConcept C524204448 @default.
- W4317491737 hasConcept C539667460 @default.
- W4317491737 hasConcept C71924100 @default.