Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317492017> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4317492017 endingPage "110041" @default.
- W4317492017 startingPage "110041" @default.
- W4317492017 abstract "Remaining useful life (RUL) prediction for aircraft engines is crucial to enabling predictive maintenance. Current RUL predictions for aircraft engines mainly focus on model-based and data-driven methods that employ a single model or algorithm. Few studies on RUL prediction have been conducted by using an ensemble method that combines prediction results from multiple algorithms. As an emerging frontier technology, ensemble learning has become a topic of interest in the field of RUL prediction because it can achieve better prediction performance than single model. In this study, a health-state-related (HSR) ensemble deep learning method that considers different degradation laws of the aircraft engine is proposed for RUL prediction. First, a health baseline is constructed and lifetime degradation is divided into several health states to represent different degradation laws. The Mahalanobis distance to the health baseline is utilized to recognize the current health state of the aircraft engine. Second, three deep learning methods, namely stacked autoencoder, convolutional neural network and long short-term memory, are selected as member algorithms and trained on different health states. Thus, different member algorithm sets are constructed for different health states, learning different degradation laws in different health states. Third, self-adaptive ensemble weight sets for different health states are calculated by applying ridge regression, which can comprehensively utilize the prediction results of each algorithm model in different health states. A case study is conducted by using a dataset of the PHM data challenge to demonstrate the effectiveness of the proposed method. The experiment result shows that the proposed HSR ensemble deep learning method can considerably improve prediction performance compared with methods that are based on a single prediction algorithm and ensemble learning method that does not consider the health state." @default.
- W4317492017 created "2023-01-20" @default.
- W4317492017 creator A5031836081 @default.
- W4317492017 creator A5045957567 @default.
- W4317492017 creator A5049836497 @default.
- W4317492017 creator A5078512312 @default.
- W4317492017 date "2023-03-01" @default.
- W4317492017 modified "2023-10-16" @default.
- W4317492017 title "A Health state-related ensemble deep learning method for aircraft engine remaining useful life prediction" @default.
- W4317492017 cites W2037838959 @default.
- W4317492017 cites W2055873761 @default.
- W4317492017 cites W2064675550 @default.
- W4317492017 cites W2100495367 @default.
- W4317492017 cites W2344741583 @default.
- W4317492017 cites W2471161958 @default.
- W4317492017 cites W2516566105 @default.
- W4317492017 cites W2594845301 @default.
- W4317492017 cites W2617137613 @default.
- W4317492017 cites W2754135416 @default.
- W4317492017 cites W2772084711 @default.
- W4317492017 cites W2773549135 @default.
- W4317492017 cites W2776641310 @default.
- W4317492017 cites W2780406317 @default.
- W4317492017 cites W2801182957 @default.
- W4317492017 cites W2885732902 @default.
- W4317492017 cites W2887044785 @default.
- W4317492017 cites W2896291989 @default.
- W4317492017 cites W2902443160 @default.
- W4317492017 cites W2906713437 @default.
- W4317492017 cites W2910482310 @default.
- W4317492017 cites W2947621394 @default.
- W4317492017 cites W2957112023 @default.
- W4317492017 cites W2961350108 @default.
- W4317492017 cites W2998227980 @default.
- W4317492017 cites W3014570380 @default.
- W4317492017 cites W3024946300 @default.
- W4317492017 cites W3044911604 @default.
- W4317492017 cites W3083458720 @default.
- W4317492017 cites W3157487644 @default.
- W4317492017 cites W4234698323 @default.
- W4317492017 cites W4281647854 @default.
- W4317492017 doi "https://doi.org/10.1016/j.asoc.2023.110041" @default.
- W4317492017 hasPublicationYear "2023" @default.
- W4317492017 type Work @default.
- W4317492017 citedByCount "2" @default.
- W4317492017 countsByYear W43174920172023 @default.
- W4317492017 crossrefType "journal-article" @default.
- W4317492017 hasAuthorship W4317492017A5031836081 @default.
- W4317492017 hasAuthorship W4317492017A5045957567 @default.
- W4317492017 hasAuthorship W4317492017A5049836497 @default.
- W4317492017 hasAuthorship W4317492017A5078512312 @default.
- W4317492017 hasConcept C101738243 @default.
- W4317492017 hasConcept C108583219 @default.
- W4317492017 hasConcept C119857082 @default.
- W4317492017 hasConcept C119898033 @default.
- W4317492017 hasConcept C124101348 @default.
- W4317492017 hasConcept C129364497 @default.
- W4317492017 hasConcept C154945302 @default.
- W4317492017 hasConcept C1921717 @default.
- W4317492017 hasConcept C41008148 @default.
- W4317492017 hasConcept C45942800 @default.
- W4317492017 hasConceptScore W4317492017C101738243 @default.
- W4317492017 hasConceptScore W4317492017C108583219 @default.
- W4317492017 hasConceptScore W4317492017C119857082 @default.
- W4317492017 hasConceptScore W4317492017C119898033 @default.
- W4317492017 hasConceptScore W4317492017C124101348 @default.
- W4317492017 hasConceptScore W4317492017C129364497 @default.
- W4317492017 hasConceptScore W4317492017C154945302 @default.
- W4317492017 hasConceptScore W4317492017C1921717 @default.
- W4317492017 hasConceptScore W4317492017C41008148 @default.
- W4317492017 hasConceptScore W4317492017C45942800 @default.
- W4317492017 hasLocation W43174920171 @default.
- W4317492017 hasOpenAccess W4317492017 @default.
- W4317492017 hasPrimaryLocation W43174920171 @default.
- W4317492017 hasRelatedWork W1807784185 @default.
- W4317492017 hasRelatedWork W1909207154 @default.
- W4317492017 hasRelatedWork W2776641310 @default.
- W4317492017 hasRelatedWork W2794896638 @default.
- W4317492017 hasRelatedWork W3101614107 @default.
- W4317492017 hasRelatedWork W3124390867 @default.
- W4317492017 hasRelatedWork W3149839747 @default.
- W4317492017 hasRelatedWork W3202800081 @default.
- W4317492017 hasRelatedWork W4240257513 @default.
- W4317492017 hasRelatedWork W45170056 @default.
- W4317492017 hasVolume "135" @default.
- W4317492017 isParatext "false" @default.
- W4317492017 isRetracted "false" @default.
- W4317492017 workType "article" @default.