Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317492703> ?p ?o ?g. }
- W4317492703 endingPage "120067" @default.
- W4317492703 startingPage "120067" @default.
- W4317492703 abstract "Modern heat exchangers encounter the paradox between the high performance and low flow resistance while most of the tasks feature in wide operating conditions where great functional flexibility is required. In this paper, we propose to tackle the dilemma by integrating shape memory alloys into the design of heat exchangers, utilizing a two-way shape memory alloy (SMA) strip as the self-adjusting vortex generator (VG) for heat transfer enhancement. The SMA based vortex generators are trained with predetermined deformation according to the temperature of the working media. To be specific, at low temperature, the SMA strip is flat to reduce the flow resistance. While the temperature is high, the SMA strip is curved to form a rectangular wing vortex generator to enhance the heat transfer. This concept was firstly verified via the experimental study followed by detailed numerical investigation focusing on the mechanism explorations. The deformation characteristic was verified by water bath. With the increase of the temperature of fluid, the heat transfer is increased by 110 ∼ 125 %. On the other hand, the Darcy friction factor can be reduced by 74 ∼ 90 %, when the heat transfer demand decreases based on the concept proposed. The details of flow and heat transfer are given and analyzed by using numerical simulation. And the numerical results are in good agreement with the experimental ones with the relative error of 11 % ∼ 3 % (on heat transfer, Re=8004400) and the warping height ΔZ=4/5 hydraulic diameter (Dh)). The ratio of heat transfer and flow resistance are positively related to the warping height (ΔZ) of VG. Under six calculated Reynolds numbers (Re), the maximum heat transfer enhancement coefficient can be reached at Re = 400 and 800, respectively, with the values ranging from 1.18 ∼ 2.68 for different ΔZ. In the case that ΔZ equals to 4 / 5 hydraulic diameter (Dh), the best performance can be achieved with Re≤1600. If Re≤800, the design can always maintain better performance than the original flat channel, and the maximum performance evaluation criteria (PEC) achieved is 1.32. Based on our research, the smart heat exchanger is expected to satisfy the heat transfer requirements of specific variable working conditions in the future." @default.
- W4317492703 created "2023-01-20" @default.
- W4317492703 creator A5006316001 @default.
- W4317492703 creator A5022060754 @default.
- W4317492703 creator A5035213157 @default.
- W4317492703 creator A5058659834 @default.
- W4317492703 creator A5075318484 @default.
- W4317492703 creator A5086852725 @default.
- W4317492703 date "2023-04-01" @default.
- W4317492703 modified "2023-09-25" @default.
- W4317492703 title "Shape memory alloys enabled smart heat exchangers" @default.
- W4317492703 cites W1973565005 @default.
- W4317492703 cites W1981448290 @default.
- W4317492703 cites W1984434450 @default.
- W4317492703 cites W2035339723 @default.
- W4317492703 cites W2042656827 @default.
- W4317492703 cites W2055543880 @default.
- W4317492703 cites W2067596304 @default.
- W4317492703 cites W2092606997 @default.
- W4317492703 cites W2259023533 @default.
- W4317492703 cites W2548601452 @default.
- W4317492703 cites W2610501400 @default.
- W4317492703 cites W2751504224 @default.
- W4317492703 cites W2791634313 @default.
- W4317492703 cites W2793279303 @default.
- W4317492703 cites W2796228983 @default.
- W4317492703 cites W2885336244 @default.
- W4317492703 cites W2891333396 @default.
- W4317492703 cites W2896787171 @default.
- W4317492703 cites W2901945147 @default.
- W4317492703 cites W2903203642 @default.
- W4317492703 cites W2906509460 @default.
- W4317492703 cites W2925581802 @default.
- W4317492703 cites W2945719062 @default.
- W4317492703 cites W3113238821 @default.
- W4317492703 cites W3120939780 @default.
- W4317492703 cites W3186352373 @default.
- W4317492703 cites W4206763831 @default.
- W4317492703 cites W4289277856 @default.
- W4317492703 cites W4292838545 @default.
- W4317492703 doi "https://doi.org/10.1016/j.applthermaleng.2023.120067" @default.
- W4317492703 hasPublicationYear "2023" @default.
- W4317492703 type Work @default.
- W4317492703 citedByCount "0" @default.
- W4317492703 crossrefType "journal-article" @default.
- W4317492703 hasAuthorship W4317492703A5006316001 @default.
- W4317492703 hasAuthorship W4317492703A5022060754 @default.
- W4317492703 hasAuthorship W4317492703A5035213157 @default.
- W4317492703 hasAuthorship W4317492703A5058659834 @default.
- W4317492703 hasAuthorship W4317492703A5075318484 @default.
- W4317492703 hasAuthorship W4317492703A5086852725 @default.
- W4317492703 hasConcept C107706546 @default.
- W4317492703 hasConcept C11413529 @default.
- W4317492703 hasConcept C118227150 @default.
- W4317492703 hasConcept C121332964 @default.
- W4317492703 hasConcept C127413603 @default.
- W4317492703 hasConcept C140369647 @default.
- W4317492703 hasConcept C140820882 @default.
- W4317492703 hasConcept C159985019 @default.
- W4317492703 hasConcept C161921814 @default.
- W4317492703 hasConcept C192562407 @default.
- W4317492703 hasConcept C2777777821 @default.
- W4317492703 hasConcept C29700514 @default.
- W4317492703 hasConcept C32375409 @default.
- W4317492703 hasConcept C39420092 @default.
- W4317492703 hasConcept C41008148 @default.
- W4317492703 hasConcept C49097943 @default.
- W4317492703 hasConcept C50517652 @default.
- W4317492703 hasConcept C57879066 @default.
- W4317492703 hasConcept C78519656 @default.
- W4317492703 hasConceptScore W4317492703C107706546 @default.
- W4317492703 hasConceptScore W4317492703C11413529 @default.
- W4317492703 hasConceptScore W4317492703C118227150 @default.
- W4317492703 hasConceptScore W4317492703C121332964 @default.
- W4317492703 hasConceptScore W4317492703C127413603 @default.
- W4317492703 hasConceptScore W4317492703C140369647 @default.
- W4317492703 hasConceptScore W4317492703C140820882 @default.
- W4317492703 hasConceptScore W4317492703C159985019 @default.
- W4317492703 hasConceptScore W4317492703C161921814 @default.
- W4317492703 hasConceptScore W4317492703C192562407 @default.
- W4317492703 hasConceptScore W4317492703C2777777821 @default.
- W4317492703 hasConceptScore W4317492703C29700514 @default.
- W4317492703 hasConceptScore W4317492703C32375409 @default.
- W4317492703 hasConceptScore W4317492703C39420092 @default.
- W4317492703 hasConceptScore W4317492703C41008148 @default.
- W4317492703 hasConceptScore W4317492703C49097943 @default.
- W4317492703 hasConceptScore W4317492703C50517652 @default.
- W4317492703 hasConceptScore W4317492703C57879066 @default.
- W4317492703 hasConceptScore W4317492703C78519656 @default.
- W4317492703 hasLocation W43174927031 @default.
- W4317492703 hasOpenAccess W4317492703 @default.
- W4317492703 hasPrimaryLocation W43174927031 @default.
- W4317492703 hasRelatedWork W1981396419 @default.
- W4317492703 hasRelatedWork W2253234791 @default.
- W4317492703 hasRelatedWork W2349972964 @default.
- W4317492703 hasRelatedWork W2354205414 @default.
- W4317492703 hasRelatedWork W2386068089 @default.
- W4317492703 hasRelatedWork W2786814486 @default.