Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317495545> ?p ?o ?g. }
- W4317495545 endingPage "382" @default.
- W4317495545 startingPage "331" @default.
- W4317495545 abstract "Statistical descriptions introduced in Chapter 1 lead to well-defined averages (and higher-order moments) and their transport equations. Each transport equation contains moments of one higher order (e.g., the transport equation of the average contains second moments), characteristic of the closure problem in single-phase turbulence. Stochastic models are well suited to representing fluctuations about averages because they imply a probability distribution for the modeled variable, and thus imply a closure model for all moments. Stochastic models for describing the evolution of Lagrangian particle properties lead naturally to stochastic differential equations (SDEs). This chapter focuses on the application of SDEs in Euler–Lagrange frameworks. Motivated by the problem of inertial particle dispersion from a point source, the Langevin equation is introduced as the prototypical SDE to model inertial particle dispersion in turbulence. The transport equation for the probability density function is established as the basis for correspondence between the stochastic model and its physical counterpart. Subsequently, stochastic Lagrangian models for inertial particles interacting with intrinsic and pseudo-turbulence are summarized. Numerical schemes for integrating SDEs are described. Finally, opportunities for extending stochastic models to capture preferential concentration and clustering phenomena are briefly outlined." @default.
- W4317495545 created "2023-01-20" @default.
- W4317495545 creator A5013695916 @default.
- W4317495545 creator A5075869845 @default.
- W4317495545 date "2023-01-01" @default.
- W4317495545 modified "2023-09-26" @default.
- W4317495545 title "Stochastic models" @default.
- W4317495545 cites W1564777342 @default.
- W4317495545 cites W1964930107 @default.
- W4317495545 cites W1967224305 @default.
- W4317495545 cites W1969432029 @default.
- W4317495545 cites W1969608768 @default.
- W4317495545 cites W1970795821 @default.
- W4317495545 cites W1970966276 @default.
- W4317495545 cites W1971494711 @default.
- W4317495545 cites W1974920865 @default.
- W4317495545 cites W1974944336 @default.
- W4317495545 cites W1976502108 @default.
- W4317495545 cites W1980475222 @default.
- W4317495545 cites W1987089139 @default.
- W4317495545 cites W1988844796 @default.
- W4317495545 cites W1990284626 @default.
- W4317495545 cites W1992340456 @default.
- W4317495545 cites W1994376567 @default.
- W4317495545 cites W1995047685 @default.
- W4317495545 cites W1995231460 @default.
- W4317495545 cites W1996685001 @default.
- W4317495545 cites W1997060416 @default.
- W4317495545 cites W2004417471 @default.
- W4317495545 cites W2005698520 @default.
- W4317495545 cites W2007543823 @default.
- W4317495545 cites W2008481796 @default.
- W4317495545 cites W2013168669 @default.
- W4317495545 cites W2014468209 @default.
- W4317495545 cites W2019465613 @default.
- W4317495545 cites W2022916957 @default.
- W4317495545 cites W2023082983 @default.
- W4317495545 cites W2024251976 @default.
- W4317495545 cites W2026798636 @default.
- W4317495545 cites W2027874434 @default.
- W4317495545 cites W2028553333 @default.
- W4317495545 cites W2029782127 @default.
- W4317495545 cites W2036538813 @default.
- W4317495545 cites W2043397824 @default.
- W4317495545 cites W2044004919 @default.
- W4317495545 cites W2049042777 @default.
- W4317495545 cites W2052492972 @default.
- W4317495545 cites W2053617231 @default.
- W4317495545 cites W2060199803 @default.
- W4317495545 cites W2061117271 @default.
- W4317495545 cites W2065812865 @default.
- W4317495545 cites W2073018916 @default.
- W4317495545 cites W2073066829 @default.
- W4317495545 cites W2073842667 @default.
- W4317495545 cites W2080610251 @default.
- W4317495545 cites W2084395305 @default.
- W4317495545 cites W2085509202 @default.
- W4317495545 cites W2096597128 @default.
- W4317495545 cites W2104547497 @default.
- W4317495545 cites W2108528639 @default.
- W4317495545 cites W2108573151 @default.
- W4317495545 cites W2121796644 @default.
- W4317495545 cites W2128254052 @default.
- W4317495545 cites W2130161431 @default.
- W4317495545 cites W2131902909 @default.
- W4317495545 cites W2133528649 @default.
- W4317495545 cites W2135751313 @default.
- W4317495545 cites W2138700548 @default.
- W4317495545 cites W2148893844 @default.
- W4317495545 cites W2152395346 @default.
- W4317495545 cites W2160754380 @default.
- W4317495545 cites W2162276283 @default.
- W4317495545 cites W2162728998 @default.
- W4317495545 cites W2167168653 @default.
- W4317495545 cites W2169631725 @default.
- W4317495545 cites W2176574276 @default.
- W4317495545 cites W2198318679 @default.
- W4317495545 cites W2239661100 @default.
- W4317495545 cites W2320681552 @default.
- W4317495545 cites W2339680970 @default.
- W4317495545 cites W2515243232 @default.
- W4317495545 cites W2561489151 @default.
- W4317495545 cites W2582164253 @default.
- W4317495545 cites W2759791353 @default.
- W4317495545 cites W2765779214 @default.
- W4317495545 cites W2900271188 @default.
- W4317495545 cites W2963298220 @default.
- W4317495545 cites W2979691350 @default.
- W4317495545 cites W2986822629 @default.
- W4317495545 cites W3004725979 @default.
- W4317495545 cites W3048754284 @default.
- W4317495545 cites W3082397072 @default.
- W4317495545 cites W3091020668 @default.
- W4317495545 cites W3099244134 @default.
- W4317495545 cites W3099471824 @default.
- W4317495545 cites W3187202041 @default.
- W4317495545 cites W319888455 @default.
- W4317495545 cites W4206725828 @default.