Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317495874> ?p ?o ?g. }
- W4317495874 abstract "Abstract Objective Compared with other regions in the world, the transmission characteristics of the COVID-19 epidemic in Africa are more obvious, has a unique transmission mode in this region; At the same time, the data related to the COVID-19 epidemic in Africa is characterized by low data quality and incomplete data coverage, which makes the prediction method of COVID-19 epidemic suitable for other regions unable to achieve good results in Africa. In order to solve the above problems, this paper proposes a prediction method that nests the in-depth learning method in the mechanism model. From the experimental results, it can better solve the above problems and better adapt to the transmission characteristics of the COVID-19 epidemic in African countries. Methods Based on the SIRV model, the COVID-19 transmission rate and trend from September 2021 to January 2022 of the top 15 African countries (South Africa, Morocco, Tunisia, Libya, Egypt, Ethiopia, Kenya, Zambia, Algeria, Botswana, Nigeria, Zimbabwe, Mozambique, Uganda, and Ghana) in the accumulative number of COVID-19 confirmed cases was fitted by using the data from Worldometer. Non-autoregressive (NAR), Long-short term memory (LSTM), Autoregressive integrated moving average (ARIMA) models, Gaussian and polynomial functions were used to predict the transmission rate β in the next 7, 14, and 21 days. Then, the predicted transmission rate βs were substituted into the SIRV model to predict the number of the COVID-19 active cases. The error analysis was conducted using root-mean-square error (RMSE) and mean absolute percentage error (MAPE). Results The fitting curves of the 7, 14, and 21 days were consistent with and higher than the original curves of daily active cases (DAC). The MAPE between the fitted and original 7-day DAC was only 1.15% and increased with the longer of predict days. Both the predicted β and DAC of the next 7, 14, and 21 days by NAR and LSTM nested models were closer to the real ones than other three ones. The minimum RMSEs for the predicted number of COVID-19 active cases in the next 7, 14, and 21 days were 12,974, 14,152, and 12,211 people, respectively when the order of magnitude for was 10 6 , with the minimum MAPE being 1.79%, 1.97%, and 1.64%, respectively. Conclusion Nesting the SIRV model with NAR, LSTM, ARIMA methods etc. through functionalizing β respectively could obtain more accurate fitting and predicting results than these models/methods alone for the number of confirmed COVID-19 cases in Africa in which nesting with NAR had the highest accuracy for the 14-day and 21-day predictions. The nested model was of high significance for early understanding of the COVID-19 disease burden and preparedness for the response." @default.
- W4317495874 created "2023-01-20" @default.
- W4317495874 creator A5022746945 @default.
- W4317495874 creator A5046597133 @default.
- W4317495874 creator A5056078859 @default.
- W4317495874 creator A5059794696 @default.
- W4317495874 creator A5070436601 @default.
- W4317495874 creator A5070599082 @default.
- W4317495874 creator A5084498273 @default.
- W4317495874 date "2023-01-19" @default.
- W4317495874 modified "2023-09-29" @default.
- W4317495874 title "Nesting the SIRV model with NAR, LSTM and statistical methods to fit and predict COVID-19 epidemic trend in Africa" @default.
- W4317495874 cites W2031336311 @default.
- W4317495874 cites W2157721241 @default.
- W4317495874 cites W2947614696 @default.
- W4317495874 cites W2996033692 @default.
- W4317495874 cites W3009876049 @default.
- W4317495874 cites W3016540417 @default.
- W4317495874 cites W3018782651 @default.
- W4317495874 cites W3020878652 @default.
- W4317495874 cites W3047281328 @default.
- W4317495874 cites W3080847722 @default.
- W4317495874 cites W3081432188 @default.
- W4317495874 cites W3099189196 @default.
- W4317495874 cites W3100347265 @default.
- W4317495874 cites W3110965060 @default.
- W4317495874 cites W3112626292 @default.
- W4317495874 cites W3119988914 @default.
- W4317495874 cites W3120178178 @default.
- W4317495874 cites W3120204199 @default.
- W4317495874 cites W3126377053 @default.
- W4317495874 cites W3127748774 @default.
- W4317495874 cites W3150933588 @default.
- W4317495874 cites W3152174608 @default.
- W4317495874 cites W3159901390 @default.
- W4317495874 cites W3161587752 @default.
- W4317495874 cites W3161777141 @default.
- W4317495874 cites W3189602862 @default.
- W4317495874 cites W3202484790 @default.
- W4317495874 cites W4200055098 @default.
- W4317495874 cites W4200468033 @default.
- W4317495874 doi "https://doi.org/10.1186/s12889-023-14992-6" @default.
- W4317495874 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36658494" @default.
- W4317495874 hasPublicationYear "2023" @default.
- W4317495874 type Work @default.
- W4317495874 citedByCount "1" @default.
- W4317495874 countsByYear W43174958742023 @default.
- W4317495874 crossrefType "journal-article" @default.
- W4317495874 hasAuthorship W4317495874A5022746945 @default.
- W4317495874 hasAuthorship W4317495874A5046597133 @default.
- W4317495874 hasAuthorship W4317495874A5056078859 @default.
- W4317495874 hasAuthorship W4317495874A5059794696 @default.
- W4317495874 hasAuthorship W4317495874A5070436601 @default.
- W4317495874 hasAuthorship W4317495874A5070599082 @default.
- W4317495874 hasAuthorship W4317495874A5084498273 @default.
- W4317495874 hasBestOaLocation W43174958741 @default.
- W4317495874 hasConcept C105795698 @default.
- W4317495874 hasConcept C139945424 @default.
- W4317495874 hasConcept C142724271 @default.
- W4317495874 hasConcept C144024400 @default.
- W4317495874 hasConcept C149923435 @default.
- W4317495874 hasConcept C150217764 @default.
- W4317495874 hasConcept C151406439 @default.
- W4317495874 hasConcept C159877910 @default.
- W4317495874 hasConcept C205649164 @default.
- W4317495874 hasConcept C24338571 @default.
- W4317495874 hasConcept C2779134260 @default.
- W4317495874 hasConcept C3008058167 @default.
- W4317495874 hasConcept C33923547 @default.
- W4317495874 hasConcept C41008148 @default.
- W4317495874 hasConcept C524204448 @default.
- W4317495874 hasConcept C71924100 @default.
- W4317495874 hasConcept C761482 @default.
- W4317495874 hasConcept C76155785 @default.
- W4317495874 hasConceptScore W4317495874C105795698 @default.
- W4317495874 hasConceptScore W4317495874C139945424 @default.
- W4317495874 hasConceptScore W4317495874C142724271 @default.
- W4317495874 hasConceptScore W4317495874C144024400 @default.
- W4317495874 hasConceptScore W4317495874C149923435 @default.
- W4317495874 hasConceptScore W4317495874C150217764 @default.
- W4317495874 hasConceptScore W4317495874C151406439 @default.
- W4317495874 hasConceptScore W4317495874C159877910 @default.
- W4317495874 hasConceptScore W4317495874C205649164 @default.
- W4317495874 hasConceptScore W4317495874C24338571 @default.
- W4317495874 hasConceptScore W4317495874C2779134260 @default.
- W4317495874 hasConceptScore W4317495874C3008058167 @default.
- W4317495874 hasConceptScore W4317495874C33923547 @default.
- W4317495874 hasConceptScore W4317495874C41008148 @default.
- W4317495874 hasConceptScore W4317495874C524204448 @default.
- W4317495874 hasConceptScore W4317495874C71924100 @default.
- W4317495874 hasConceptScore W4317495874C761482 @default.
- W4317495874 hasConceptScore W4317495874C76155785 @default.
- W4317495874 hasIssue "1" @default.
- W4317495874 hasLocation W43174958741 @default.
- W4317495874 hasLocation W43174958742 @default.
- W4317495874 hasLocation W43174958743 @default.
- W4317495874 hasOpenAccess W4317495874 @default.
- W4317495874 hasPrimaryLocation W43174958741 @default.
- W4317495874 hasRelatedWork W2550089990 @default.
- W4317495874 hasRelatedWork W2770456714 @default.