Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317496710> ?p ?o ?g. }
- W4317496710 endingPage "342" @default.
- W4317496710 startingPage "331" @default.
- W4317496710 abstract "From rate to temporal encoding, spiking information processing has demonstrated advantages across diverse neuromorphic applications. In the aspects of data capacity and robustness, multiplexing encoding outperforms alternative encoding schemes. In this work, we aim to implement a new class of multiplexing temporal encoders, patterning stimuli in multiple timescales to improve the information processing capability, and robustness of systems deployed in noisy environments. Benefitted by the internal reference frame using subthreshold membrane oscillation (SMO), the encoded spike patterns are less sensitive to the input noise, increasing the encoder’s robustness. Our design results in a tremendous saving on power consumption and silicon area compared with the power-hungry analog-to-digital converters. Furthermore, a working prototype of the multiplexing temporal encoder built based on an interspike interval (ISI) encoding scheme is implemented on a silicon chip using the standard 180-nm CMOS process. To the best of our knowledge, our introduced encoder demonstrates the first integrated circuit (IC) implementation of neural encoding with multiplexing topology. Finally, the accuracy and efficiency of our design are evaluated through standard machine learning benchmarks, including Modified National Institute of Standards and Technology (MNIST), Canadian Institute For Advanced Research (CIFAR)-10, Street View House Number (SVHN), and spectrum sensing in high-speed communication networks. While our multiplexing temporal encoder demonstrates a higher classification accuracy across all the benchmarks, the power consumption and dissipated energy per spike reach merely <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$2.6~mu text {W}$ </tex-math></inline-formula> and 95 fJ/spike, respectively, with an effective frame rate of 300 MHz. Compared with alternative encoding schemes, our multiplexing temporal encoder achieves at most 100% higher data capacity, 11.4% more accurate in classification, and 25% more robust against noise. Compared with the state-of-the-art designs, our work achieves up to <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$105 times $ </tex-math></inline-formula> power efficiency without significantly increasing the silicon area." @default.
- W4317496710 created "2023-01-20" @default.
- W4317496710 creator A5009519336 @default.
- W4317496710 creator A5018632091 @default.
- W4317496710 creator A5079345564 @default.
- W4317496710 date "2023-03-01" @default.
- W4317496710 modified "2023-10-18" @default.
- W4317496710 title "Enabling a New Methodology of Neural Coding: Multiplexing Temporal Encoding in Neuromorphic Computing" @default.
- W4317496710 cites W1604973310 @default.
- W4317496710 cites W1976433270 @default.
- W4317496710 cites W1978306818 @default.
- W4317496710 cites W1985489865 @default.
- W4317496710 cites W2000159440 @default.
- W4317496710 cites W2007339694 @default.
- W4317496710 cites W2020676607 @default.
- W4317496710 cites W2047984762 @default.
- W4317496710 cites W2051552132 @default.
- W4317496710 cites W2061056596 @default.
- W4317496710 cites W2082690044 @default.
- W4317496710 cites W2100369781 @default.
- W4317496710 cites W2117172400 @default.
- W4317496710 cites W2163630896 @default.
- W4317496710 cites W2169062186 @default.
- W4317496710 cites W2508349857 @default.
- W4317496710 cites W2508418736 @default.
- W4317496710 cites W2535636396 @default.
- W4317496710 cites W2766107700 @default.
- W4317496710 cites W2783525259 @default.
- W4317496710 cites W2809466050 @default.
- W4317496710 cites W2921042813 @default.
- W4317496710 cites W2922002199 @default.
- W4317496710 cites W2942088938 @default.
- W4317496710 cites W2964296416 @default.
- W4317496710 cites W2970585112 @default.
- W4317496710 cites W2979610412 @default.
- W4317496710 cites W2998689804 @default.
- W4317496710 cites W3006426821 @default.
- W4317496710 cites W3118707936 @default.
- W4317496710 cites W3133178377 @default.
- W4317496710 cites W3212071010 @default.
- W4317496710 cites W4200033355 @default.
- W4317496710 cites W4238614602 @default.
- W4317496710 cites W4283718393 @default.
- W4317496710 cites W4286579619 @default.
- W4317496710 doi "https://doi.org/10.1109/tvlsi.2023.3234514" @default.
- W4317496710 hasPublicationYear "2023" @default.
- W4317496710 type Work @default.
- W4317496710 citedByCount "2" @default.
- W4317496710 countsByYear W43174967102023 @default.
- W4317496710 crossrefType "journal-article" @default.
- W4317496710 hasAuthorship W4317496710A5009519336 @default.
- W4317496710 hasAuthorship W4317496710A5018632091 @default.
- W4317496710 hasAuthorship W4317496710A5079345564 @default.
- W4317496710 hasConcept C104317684 @default.
- W4317496710 hasConcept C111919701 @default.
- W4317496710 hasConcept C113775141 @default.
- W4317496710 hasConcept C118505674 @default.
- W4317496710 hasConcept C118524514 @default.
- W4317496710 hasConcept C127413603 @default.
- W4317496710 hasConcept C151927369 @default.
- W4317496710 hasConcept C154945302 @default.
- W4317496710 hasConcept C185592680 @default.
- W4317496710 hasConcept C190502265 @default.
- W4317496710 hasConcept C19275194 @default.
- W4317496710 hasConcept C24326235 @default.
- W4317496710 hasConcept C41008148 @default.
- W4317496710 hasConcept C50644808 @default.
- W4317496710 hasConcept C55493867 @default.
- W4317496710 hasConcept C57890076 @default.
- W4317496710 hasConcept C63479239 @default.
- W4317496710 hasConcept C76155785 @default.
- W4317496710 hasConcept C78548338 @default.
- W4317496710 hasConcept C81081738 @default.
- W4317496710 hasConcept C9390403 @default.
- W4317496710 hasConceptScore W4317496710C104317684 @default.
- W4317496710 hasConceptScore W4317496710C111919701 @default.
- W4317496710 hasConceptScore W4317496710C113775141 @default.
- W4317496710 hasConceptScore W4317496710C118505674 @default.
- W4317496710 hasConceptScore W4317496710C118524514 @default.
- W4317496710 hasConceptScore W4317496710C127413603 @default.
- W4317496710 hasConceptScore W4317496710C151927369 @default.
- W4317496710 hasConceptScore W4317496710C154945302 @default.
- W4317496710 hasConceptScore W4317496710C185592680 @default.
- W4317496710 hasConceptScore W4317496710C190502265 @default.
- W4317496710 hasConceptScore W4317496710C19275194 @default.
- W4317496710 hasConceptScore W4317496710C24326235 @default.
- W4317496710 hasConceptScore W4317496710C41008148 @default.
- W4317496710 hasConceptScore W4317496710C50644808 @default.
- W4317496710 hasConceptScore W4317496710C55493867 @default.
- W4317496710 hasConceptScore W4317496710C57890076 @default.
- W4317496710 hasConceptScore W4317496710C63479239 @default.
- W4317496710 hasConceptScore W4317496710C76155785 @default.
- W4317496710 hasConceptScore W4317496710C78548338 @default.
- W4317496710 hasConceptScore W4317496710C81081738 @default.
- W4317496710 hasConceptScore W4317496710C9390403 @default.
- W4317496710 hasFunder F4320306076 @default.
- W4317496710 hasIssue "3" @default.
- W4317496710 hasLocation W43174967101 @default.