Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317496723> ?p ?o ?g. }
- W4317496723 endingPage "11609" @default.
- W4317496723 startingPage "11599" @default.
- W4317496723 abstract "In <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>multiple-instance learning</i> (MIL), each training example is represented by a bag of instances. A training bag is either negative if it contains no positive instances or positive if it has at least one positive instance. Previous MIL methods generally assume that training bags are fully labeled. However, the exact labels of training examples may not be accessible, due to security, confidentiality, and privacy concerns. Fortunately, it could be easier for us to access the pairwise similarity between two bags (indicating whether two bags share the same label or not) and unlabeled bags, as we do not need to know the underlying label of each bag. In this paper, we provide the first attempt to investigate MIL from only similar-dissimilar-unlabeled bags. To solve this new MIL problem, we first propose a strong baseline method that trains an instance-level classifier by employing an unlabeled-unlabeled learning strategy. Then, we also propose to train a bag-level classifier based on a convex formulation and theoretically derive a generalization error bound for this method. Comprehensive experimental results show that our instance-level classifier works well, while our bag-level classifier even has better performance." @default.
- W4317496723 created "2023-01-20" @default.
- W4317496723 creator A5017743551 @default.
- W4317496723 creator A5020027500 @default.
- W4317496723 creator A5039818538 @default.
- W4317496723 creator A5040537076 @default.
- W4317496723 creator A5049073944 @default.
- W4317496723 creator A5056213361 @default.
- W4317496723 creator A5077897263 @default.
- W4317496723 creator A5079461118 @default.
- W4317496723 date "2023-11-01" @default.
- W4317496723 modified "2023-10-10" @default.
- W4317496723 title "Multiple-Instance Learning From Unlabeled Bags With Pairwise Similarity" @default.
- W4317496723 cites W101414327 @default.
- W4317496723 cites W1560331282 @default.
- W4317496723 cites W1916290045 @default.
- W4317496723 cites W1938425378 @default.
- W4317496723 cites W1990334093 @default.
- W4317496723 cites W2010792435 @default.
- W4317496723 cites W2046622454 @default.
- W4317496723 cites W2074992691 @default.
- W4317496723 cites W2095838485 @default.
- W4317496723 cites W2098166271 @default.
- W4317496723 cites W2099528205 @default.
- W4317496723 cites W2110119381 @default.
- W4317496723 cites W2125479168 @default.
- W4317496723 cites W2126006675 @default.
- W4317496723 cites W2129018774 @default.
- W4317496723 cites W2133288557 @default.
- W4317496723 cites W2141284791 @default.
- W4317496723 cites W2142730785 @default.
- W4317496723 cites W2167089254 @default.
- W4317496723 cites W2171723438 @default.
- W4317496723 cites W2343974644 @default.
- W4317496723 cites W2560886373 @default.
- W4317496723 cites W2733555913 @default.
- W4317496723 cites W2746791238 @default.
- W4317496723 cites W2963121529 @default.
- W4317496723 cites W2964159205 @default.
- W4317496723 cites W2967363906 @default.
- W4317496723 cites W2973519034 @default.
- W4317496723 cites W2989661724 @default.
- W4317496723 cites W3000533570 @default.
- W4317496723 cites W3034185248 @default.
- W4317496723 cites W3034806882 @default.
- W4317496723 cites W3080919260 @default.
- W4317496723 cites W3129588459 @default.
- W4317496723 cites W3133217640 @default.
- W4317496723 cites W3171790343 @default.
- W4317496723 cites W3213646008 @default.
- W4317496723 cites W4210258547 @default.
- W4317496723 cites W4249192582 @default.
- W4317496723 doi "https://doi.org/10.1109/tkde.2022.3232141" @default.
- W4317496723 hasPublicationYear "2023" @default.
- W4317496723 type Work @default.
- W4317496723 citedByCount "0" @default.
- W4317496723 crossrefType "journal-article" @default.
- W4317496723 hasAuthorship W4317496723A5017743551 @default.
- W4317496723 hasAuthorship W4317496723A5020027500 @default.
- W4317496723 hasAuthorship W4317496723A5039818538 @default.
- W4317496723 hasAuthorship W4317496723A5040537076 @default.
- W4317496723 hasAuthorship W4317496723A5049073944 @default.
- W4317496723 hasAuthorship W4317496723A5056213361 @default.
- W4317496723 hasAuthorship W4317496723A5077897263 @default.
- W4317496723 hasAuthorship W4317496723A5079461118 @default.
- W4317496723 hasConcept C110875604 @default.
- W4317496723 hasConcept C119857082 @default.
- W4317496723 hasConcept C13672336 @default.
- W4317496723 hasConcept C136764020 @default.
- W4317496723 hasConcept C153180895 @default.
- W4317496723 hasConcept C154945302 @default.
- W4317496723 hasConcept C158955206 @default.
- W4317496723 hasConcept C184898388 @default.
- W4317496723 hasConcept C41008148 @default.
- W4317496723 hasConcept C95623464 @default.
- W4317496723 hasConceptScore W4317496723C110875604 @default.
- W4317496723 hasConceptScore W4317496723C119857082 @default.
- W4317496723 hasConceptScore W4317496723C13672336 @default.
- W4317496723 hasConceptScore W4317496723C136764020 @default.
- W4317496723 hasConceptScore W4317496723C153180895 @default.
- W4317496723 hasConceptScore W4317496723C154945302 @default.
- W4317496723 hasConceptScore W4317496723C158955206 @default.
- W4317496723 hasConceptScore W4317496723C184898388 @default.
- W4317496723 hasConceptScore W4317496723C41008148 @default.
- W4317496723 hasConceptScore W4317496723C95623464 @default.
- W4317496723 hasFunder F4320320709 @default.
- W4317496723 hasFunder F4320321001 @default.
- W4317496723 hasIssue "11" @default.
- W4317496723 hasLocation W43174967231 @default.
- W4317496723 hasOpenAccess W4317496723 @default.
- W4317496723 hasPrimaryLocation W43174967231 @default.
- W4317496723 hasRelatedWork W1493211731 @default.
- W4317496723 hasRelatedWork W2003072179 @default.
- W4317496723 hasRelatedWork W2570094154 @default.
- W4317496723 hasRelatedWork W2943490005 @default.
- W4317496723 hasRelatedWork W3012043050 @default.
- W4317496723 hasRelatedWork W3036941175 @default.
- W4317496723 hasRelatedWork W3138737920 @default.