Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317498781> ?p ?o ?g. }
- W4317498781 abstract "<sec> <title>BACKGROUND</title> COVID-19 has been reported to affect the sleep quality of Chinese residents; however, the epidemic’s effects on the sleep quality of college students during closed-loop management remain unclear, and a screening tool is lacking. </sec> <sec> <title>OBJECTIVE</title> This study aimed to understand the sleep quality of college students in Fujian Province during the epidemic and determine sensitive variables, in order to develop an efficient prediction model for the early screening of sleep problems in college students. </sec> <sec> <title>METHODS</title> From April 5 to 16, 2022, a cross-sectional internet-based survey was conducted. The Pittsburgh Sleep Quality Index (PSQI) scale, a self-designed general data questionnaire, and the sleep quality influencing factor questionnaire were used to understand the sleep quality of respondents in the previous month. A chi-square test and a multivariate unconditioned logistic regression analysis were performed, and influencing factors obtained were applied to develop prediction models. The data were divided into a training-testing set (n=14,451, 70%) and an independent validation set (n=6194, 30%) by stratified sampling. Four models using logistic regression, an artificial neural network, random forest, and naïve Bayes were developed and validated. </sec> <sec> <title>RESULTS</title> In total, 20,645 subjects were included in this survey, with a mean global PSQI score of 6.02 (SD 3.112). The sleep disturbance rate was 28.9% (n=5972, defined as a global PSQI score >7 points). A total of 11 variables related to sleep quality were taken as parameters of the prediction models, including age, gender, residence, specialty, respiratory history, coffee consumption, stay up, long hours on the internet, sudden changes, fears of infection, and impatient closed-loop management. Among the generated models, the artificial neural network model proved to be the best, with an area under curve, accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 0.713, 73.52%, 25.51%, 92.58%, 57.71%, and 75.79%, respectively. It is noteworthy that the logistic regression, random forest, and naive Bayes models achieved high specificities of 94.41%, 94.77%, and 86.40%, respectively. </sec> <sec> <title>CONCLUSIONS</title> The COVID-19 containment measures affected the sleep quality of college students on multiple levels, indicating that it is desiderate to provide targeted university management and social support. The artificial neural network model has presented excellent predictive efficiency and is favorable for implementing measures earlier in order to improve present conditions. </sec> <sec> <title>CLINICALTRIAL</title> <p /> </sec>" @default.
- W4317498781 created "2023-01-20" @default.
- W4317498781 creator A5001800166 @default.
- W4317498781 creator A5002851411 @default.
- W4317498781 creator A5003682350 @default.
- W4317498781 creator A5004491748 @default.
- W4317498781 creator A5004713037 @default.
- W4317498781 creator A5004723478 @default.
- W4317498781 creator A5007960716 @default.
- W4317498781 creator A5011274662 @default.
- W4317498781 creator A5059402098 @default.
- W4317498781 creator A5059628383 @default.
- W4317498781 creator A5079264637 @default.
- W4317498781 date "2023-01-14" @default.
- W4317498781 modified "2023-09-27" @default.
- W4317498781 title "Prediction Models for Sleep Quality Among College Students During the COVID-19 Outbreak: Cross-sectional Study Based on the Internet New Media (Preprint)" @default.
- W4317498781 cites W1915306537 @default.
- W4317498781 cites W1977975426 @default.
- W4317498781 cites W2012289572 @default.
- W4317498781 cites W2024185715 @default.
- W4317498781 cites W2038155949 @default.
- W4317498781 cites W2132471961 @default.
- W4317498781 cites W2151487996 @default.
- W4317498781 cites W2158739899 @default.
- W4317498781 cites W2177870565 @default.
- W4317498781 cites W2472496494 @default.
- W4317498781 cites W2789916407 @default.
- W4317498781 cites W2886522935 @default.
- W4317498781 cites W2936857583 @default.
- W4317498781 cites W2971957961 @default.
- W4317498781 cites W2995098893 @default.
- W4317498781 cites W3010200460 @default.
- W4317498781 cites W3013207139 @default.
- W4317498781 cites W3018411651 @default.
- W4317498781 cites W3026158576 @default.
- W4317498781 cites W3045104995 @default.
- W4317498781 cites W3099068168 @default.
- W4317498781 cites W3099913278 @default.
- W4317498781 cites W3104540889 @default.
- W4317498781 cites W3116449118 @default.
- W4317498781 cites W3151374299 @default.
- W4317498781 cites W3194368700 @default.
- W4317498781 cites W3203364067 @default.
- W4317498781 cites W4205095580 @default.
- W4317498781 cites W4206971647 @default.
- W4317498781 cites W4250637000 @default.
- W4317498781 cites W4255466918 @default.
- W4317498781 cites W4296793963 @default.
- W4317498781 cites W762533598 @default.
- W4317498781 doi "https://doi.org/10.2196/preprints.45721" @default.
- W4317498781 hasPublicationYear "2023" @default.
- W4317498781 type Work @default.
- W4317498781 citedByCount "0" @default.
- W4317498781 crossrefType "posted-content" @default.
- W4317498781 hasAuthorship W4317498781A5001800166 @default.
- W4317498781 hasAuthorship W4317498781A5002851411 @default.
- W4317498781 hasAuthorship W4317498781A5003682350 @default.
- W4317498781 hasAuthorship W4317498781A5004491748 @default.
- W4317498781 hasAuthorship W4317498781A5004713037 @default.
- W4317498781 hasAuthorship W4317498781A5004723478 @default.
- W4317498781 hasAuthorship W4317498781A5007960716 @default.
- W4317498781 hasAuthorship W4317498781A5011274662 @default.
- W4317498781 hasAuthorship W4317498781A5059402098 @default.
- W4317498781 hasAuthorship W4317498781A5059628383 @default.
- W4317498781 hasAuthorship W4317498781A5079264637 @default.
- W4317498781 hasBestOaLocation W43174987812 @default.
- W4317498781 hasConcept C105795698 @default.
- W4317498781 hasConcept C111919701 @default.
- W4317498781 hasConcept C118552586 @default.
- W4317498781 hasConcept C119857082 @default.
- W4317498781 hasConcept C12267149 @default.
- W4317498781 hasConcept C142052008 @default.
- W4317498781 hasConcept C151956035 @default.
- W4317498781 hasConcept C152877465 @default.
- W4317498781 hasConcept C15744967 @default.
- W4317498781 hasConcept C169258074 @default.
- W4317498781 hasConcept C2775841894 @default.
- W4317498781 hasConcept C2776245837 @default.
- W4317498781 hasConcept C2781210498 @default.
- W4317498781 hasConcept C2983189541 @default.
- W4317498781 hasConcept C33923547 @default.
- W4317498781 hasConcept C41008148 @default.
- W4317498781 hasConcept C49898467 @default.
- W4317498781 hasConcept C52001869 @default.
- W4317498781 hasConcept C71924100 @default.
- W4317498781 hasConceptScore W4317498781C105795698 @default.
- W4317498781 hasConceptScore W4317498781C111919701 @default.
- W4317498781 hasConceptScore W4317498781C118552586 @default.
- W4317498781 hasConceptScore W4317498781C119857082 @default.
- W4317498781 hasConceptScore W4317498781C12267149 @default.
- W4317498781 hasConceptScore W4317498781C142052008 @default.
- W4317498781 hasConceptScore W4317498781C151956035 @default.
- W4317498781 hasConceptScore W4317498781C152877465 @default.
- W4317498781 hasConceptScore W4317498781C15744967 @default.
- W4317498781 hasConceptScore W4317498781C169258074 @default.
- W4317498781 hasConceptScore W4317498781C2775841894 @default.
- W4317498781 hasConceptScore W4317498781C2776245837 @default.
- W4317498781 hasConceptScore W4317498781C2781210498 @default.
- W4317498781 hasConceptScore W4317498781C2983189541 @default.
- W4317498781 hasConceptScore W4317498781C33923547 @default.