Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317503811> ?p ?o ?g. }
- W4317503811 endingPage "932" @default.
- W4317503811 startingPage "932" @default.
- W4317503811 abstract "In recent decades, various previous research has established empirical formulae or thermodynamic models for martensite start temperature (Ms) prediction. However, most of this research has mainly considered the effect of composition and ignored complex microstructural factors, such as morphology, that significantly affect Ms. The main limitation is that most microstructures cannot be digitized into numerical data. In order to solve this problem, a convolutional neural network model that can use both composition information and microstructure images as input was established for Ms prediction in a medium-Mn steel system in this research. Firstly, the database was established through experimenting. Then, the model was built and trained with the database. Finally, the performance of the model was systematically evaluated based on comparison with other, traditional AI models. It was proven that the new model provided in this research is more rational and accurate because it considers both composition and microstructural factors. In addition, because of the use of microstructure images for data augmentation, the deep learning had a low risk of overfitting. When the deep-learning strategy is used to deal with data that contains both numerical and image data types, obtaining the value matrix that contains interaction information of both numerical and image data through data preprocessing is probably a better approach than direct linking of the numerical data vector to the fully connected layer." @default.
- W4317503811 created "2023-01-20" @default.
- W4317503811 creator A5013949202 @default.
- W4317503811 creator A5023214008 @default.
- W4317503811 creator A5055869768 @default.
- W4317503811 creator A5056101043 @default.
- W4317503811 creator A5085618178 @default.
- W4317503811 date "2023-01-18" @default.
- W4317503811 modified "2023-10-17" @default.
- W4317503811 title "Martensite Start Temperature Prediction through a Deep Learning Strategy Using Both Microstructure Images and Composition Data" @default.
- W4317503811 cites W1965825575 @default.
- W4317503811 cites W1978600668 @default.
- W4317503811 cites W1980931208 @default.
- W4317503811 cites W2007966349 @default.
- W4317503811 cites W2011343409 @default.
- W4317503811 cites W2018853127 @default.
- W4317503811 cites W2021418234 @default.
- W4317503811 cites W2023489023 @default.
- W4317503811 cites W2029313846 @default.
- W4317503811 cites W2030912032 @default.
- W4317503811 cites W2059022940 @default.
- W4317503811 cites W2076063813 @default.
- W4317503811 cites W2085754074 @default.
- W4317503811 cites W2090955312 @default.
- W4317503811 cites W2168714766 @default.
- W4317503811 cites W2343732621 @default.
- W4317503811 cites W2383759109 @default.
- W4317503811 cites W2461936476 @default.
- W4317503811 cites W2561441571 @default.
- W4317503811 cites W2602868757 @default.
- W4317503811 cites W2794284562 @default.
- W4317503811 cites W2922151845 @default.
- W4317503811 cites W2947767829 @default.
- W4317503811 cites W2969389191 @default.
- W4317503811 cites W2972084844 @default.
- W4317503811 cites W2974401757 @default.
- W4317503811 cites W2987758496 @default.
- W4317503811 cites W3004907498 @default.
- W4317503811 cites W3007575135 @default.
- W4317503811 cites W3019069760 @default.
- W4317503811 cites W3039885211 @default.
- W4317503811 cites W3113341565 @default.
- W4317503811 cites W3130303126 @default.
- W4317503811 cites W3137870691 @default.
- W4317503811 cites W3159720216 @default.
- W4317503811 cites W3162292071 @default.
- W4317503811 cites W3172838450 @default.
- W4317503811 cites W3192424415 @default.
- W4317503811 cites W3194465082 @default.
- W4317503811 cites W3205691717 @default.
- W4317503811 cites W655215086 @default.
- W4317503811 doi "https://doi.org/10.3390/ma16030932" @default.
- W4317503811 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36769939" @default.
- W4317503811 hasPublicationYear "2023" @default.
- W4317503811 type Work @default.
- W4317503811 citedByCount "1" @default.
- W4317503811 countsByYear W43175038112023 @default.
- W4317503811 crossrefType "journal-article" @default.
- W4317503811 hasAuthorship W4317503811A5013949202 @default.
- W4317503811 hasAuthorship W4317503811A5023214008 @default.
- W4317503811 hasAuthorship W4317503811A5055869768 @default.
- W4317503811 hasAuthorship W4317503811A5056101043 @default.
- W4317503811 hasAuthorship W4317503811A5085618178 @default.
- W4317503811 hasBestOaLocation W43175038111 @default.
- W4317503811 hasConcept C10551718 @default.
- W4317503811 hasConcept C108583219 @default.
- W4317503811 hasConcept C11413529 @default.
- W4317503811 hasConcept C115961682 @default.
- W4317503811 hasConcept C119857082 @default.
- W4317503811 hasConcept C124101348 @default.
- W4317503811 hasConcept C154945302 @default.
- W4317503811 hasConcept C18747287 @default.
- W4317503811 hasConcept C191897082 @default.
- W4317503811 hasConcept C192562407 @default.
- W4317503811 hasConcept C22019652 @default.
- W4317503811 hasConcept C34736171 @default.
- W4317503811 hasConcept C41008148 @default.
- W4317503811 hasConcept C50644808 @default.
- W4317503811 hasConcept C81363708 @default.
- W4317503811 hasConcept C87976508 @default.
- W4317503811 hasConceptScore W4317503811C10551718 @default.
- W4317503811 hasConceptScore W4317503811C108583219 @default.
- W4317503811 hasConceptScore W4317503811C11413529 @default.
- W4317503811 hasConceptScore W4317503811C115961682 @default.
- W4317503811 hasConceptScore W4317503811C119857082 @default.
- W4317503811 hasConceptScore W4317503811C124101348 @default.
- W4317503811 hasConceptScore W4317503811C154945302 @default.
- W4317503811 hasConceptScore W4317503811C18747287 @default.
- W4317503811 hasConceptScore W4317503811C191897082 @default.
- W4317503811 hasConceptScore W4317503811C192562407 @default.
- W4317503811 hasConceptScore W4317503811C22019652 @default.
- W4317503811 hasConceptScore W4317503811C34736171 @default.
- W4317503811 hasConceptScore W4317503811C41008148 @default.
- W4317503811 hasConceptScore W4317503811C50644808 @default.
- W4317503811 hasConceptScore W4317503811C81363708 @default.
- W4317503811 hasConceptScore W4317503811C87976508 @default.
- W4317503811 hasFunder F4320321001 @default.
- W4317503811 hasIssue "3" @default.