Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317504005> ?p ?o ?g. }
- W4317504005 endingPage "1862" @default.
- W4317504005 startingPage "1862" @default.
- W4317504005 abstract "User-generated contents (UGCs) on social media are a valuable source of emergency information (EI) that can facilitate emergency responses. However, the tremendous amount and heterogeneous quality of social media UGCs make it difficult to extract truly useful EI, especially using pure machine learning methods. Hence, this study proposes a machine learning and rule-based integration method (MRIM) and evaluates its EI classification performance and determinants. Through comparative experiments on microblog data about the “July 20 heavy rainstorm in Zhengzhou” posted on China’s largest social media platform, we find that the MRIM performs better than pure machine learning methods and pure rule-based methods, and that its performance is influenced by microblog characteristics such as the number of words, exact address and contact information, and users’ attention. This study demonstrates the feasibility of integrating machine learning and rule-based methods to mine the text of social media UGCs and provides actionable suggestions for emergency information management practitioners." @default.
- W4317504005 created "2023-01-20" @default.
- W4317504005 creator A5025243389 @default.
- W4317504005 creator A5047854935 @default.
- W4317504005 creator A5075120738 @default.
- W4317504005 date "2023-01-19" @default.
- W4317504005 modified "2023-09-25" @default.
- W4317504005 title "Extracting Useful Emergency Information from Social Media: A Method Integrating Machine Learning and Rule-Based Classification" @default.
- W4317504005 cites W1575830776 @default.
- W4317504005 cites W1983311293 @default.
- W4317504005 cites W1988939740 @default.
- W4317504005 cites W2022783018 @default.
- W4317504005 cites W2027687511 @default.
- W4317504005 cites W2048276338 @default.
- W4317504005 cites W2051473243 @default.
- W4317504005 cites W2079150238 @default.
- W4317504005 cites W2120116197 @default.
- W4317504005 cites W2149684865 @default.
- W4317504005 cites W2166792446 @default.
- W4317504005 cites W2294143854 @default.
- W4317504005 cites W2299955544 @default.
- W4317504005 cites W2316111229 @default.
- W4317504005 cites W2322159772 @default.
- W4317504005 cites W2425780833 @default.
- W4317504005 cites W2536496570 @default.
- W4317504005 cites W2616728312 @default.
- W4317504005 cites W2750108332 @default.
- W4317504005 cites W2924322406 @default.
- W4317504005 cites W2951301536 @default.
- W4317504005 cites W2962707464 @default.
- W4317504005 cites W2981123093 @default.
- W4317504005 cites W2995668814 @default.
- W4317504005 cites W3011133285 @default.
- W4317504005 cites W3016585425 @default.
- W4317504005 cites W3023211159 @default.
- W4317504005 cites W3024097351 @default.
- W4317504005 cites W3027902656 @default.
- W4317504005 cites W3033150304 @default.
- W4317504005 cites W3033808757 @default.
- W4317504005 cites W3034695706 @default.
- W4317504005 cites W3046137360 @default.
- W4317504005 cites W3048561042 @default.
- W4317504005 cites W3102118083 @default.
- W4317504005 cites W3117430991 @default.
- W4317504005 cites W3118509914 @default.
- W4317504005 cites W3120608301 @default.
- W4317504005 cites W3122929941 @default.
- W4317504005 cites W3128395005 @default.
- W4317504005 cites W3130610606 @default.
- W4317504005 cites W3136003884 @default.
- W4317504005 cites W3164947024 @default.
- W4317504005 cites W3168396129 @default.
- W4317504005 cites W3170852693 @default.
- W4317504005 cites W3174573408 @default.
- W4317504005 cites W3184437493 @default.
- W4317504005 cites W3207329064 @default.
- W4317504005 cites W3211425436 @default.
- W4317504005 cites W4206341919 @default.
- W4317504005 cites W4224608774 @default.
- W4317504005 cites W4229004223 @default.
- W4317504005 cites W50740790 @default.
- W4317504005 doi "https://doi.org/10.3390/ijerph20031862" @default.
- W4317504005 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36767235" @default.
- W4317504005 hasPublicationYear "2023" @default.
- W4317504005 type Work @default.
- W4317504005 citedByCount "0" @default.
- W4317504005 crossrefType "journal-article" @default.
- W4317504005 hasAuthorship W4317504005A5025243389 @default.
- W4317504005 hasAuthorship W4317504005A5047854935 @default.
- W4317504005 hasAuthorship W4317504005A5075120738 @default.
- W4317504005 hasBestOaLocation W43175040051 @default.
- W4317504005 hasConcept C111472728 @default.
- W4317504005 hasConcept C119857082 @default.
- W4317504005 hasConcept C124101348 @default.
- W4317504005 hasConcept C136764020 @default.
- W4317504005 hasConcept C138885662 @default.
- W4317504005 hasConcept C143275388 @default.
- W4317504005 hasConcept C149271511 @default.
- W4317504005 hasConcept C154945302 @default.
- W4317504005 hasConcept C2522767166 @default.
- W4317504005 hasConcept C2779530757 @default.
- W4317504005 hasConcept C41008148 @default.
- W4317504005 hasConcept C518677369 @default.
- W4317504005 hasConceptScore W4317504005C111472728 @default.
- W4317504005 hasConceptScore W4317504005C119857082 @default.
- W4317504005 hasConceptScore W4317504005C124101348 @default.
- W4317504005 hasConceptScore W4317504005C136764020 @default.
- W4317504005 hasConceptScore W4317504005C138885662 @default.
- W4317504005 hasConceptScore W4317504005C143275388 @default.
- W4317504005 hasConceptScore W4317504005C149271511 @default.
- W4317504005 hasConceptScore W4317504005C154945302 @default.
- W4317504005 hasConceptScore W4317504005C2522767166 @default.
- W4317504005 hasConceptScore W4317504005C2779530757 @default.
- W4317504005 hasConceptScore W4317504005C41008148 @default.
- W4317504005 hasConceptScore W4317504005C518677369 @default.
- W4317504005 hasFunder F4320321001 @default.
- W4317504005 hasIssue "3" @default.
- W4317504005 hasLocation W43175040051 @default.