Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317505581> ?p ?o ?g. }
- W4317505581 endingPage "508" @default.
- W4317505581 startingPage "508" @default.
- W4317505581 abstract "With the current shift in the mass media landscape from journalistic rigor to social media, personalized social media is becoming the new norm. Although the digitalization progress of the media brings many advantages, it also increases the risk of spreading disinformation, misinformation, and malformation through the use of fake news. The emergence of this harmful phenomenon has managed to polarize society and manipulate public opinion on particular topics, e.g., elections, vaccinations, etc. Such information propagated on social media can distort public perceptions and generate social unrest while lacking the rigor of traditional journalism. Natural Language Processing and Machine Learning techniques are essential for developing efficient tools that can detect fake news. Models that use the context of textual data are essential for resolving the fake news detection problem, as they manage to encode linguistic features within the vector representation of words. In this paper, we propose a new approach that uses document embeddings to build multiple models that accurately label news articles as reliable or fake. We also present a benchmark on different architectures that detect fake news using binary or multi-labeled classification. We evaluated the models on five large news corpora using accuracy, precision, and recall. We obtained better results than more complex state-of-the-art Deep Neural Network models. We observe that the most important factor for obtaining high accuracy is the document encoding, not the classification model's complexity." @default.
- W4317505581 created "2023-01-20" @default.
- W4317505581 creator A5007725540 @default.
- W4317505581 creator A5026015539 @default.
- W4317505581 date "2023-01-18" @default.
- W4317505581 modified "2023-10-16" @default.
- W4317505581 title "It’s All in the Embedding! Fake News Detection Using Document Embeddings" @default.
- W4317505581 cites W2064675550 @default.
- W4317505581 cites W2128521126 @default.
- W4317505581 cites W2170505850 @default.
- W4317505581 cites W2250539671 @default.
- W4317505581 cites W2410465342 @default.
- W4317505581 cites W2493916176 @default.
- W4317505581 cites W2604264634 @default.
- W4317505581 cites W2604760541 @default.
- W4317505581 cites W2753241397 @default.
- W4317505581 cites W2759820691 @default.
- W4317505581 cites W2912305564 @default.
- W4317505581 cites W2913578037 @default.
- W4317505581 cites W2946595845 @default.
- W4317505581 cites W2951307134 @default.
- W4317505581 cites W2954365773 @default.
- W4317505581 cites W2954646118 @default.
- W4317505581 cites W2964199361 @default.
- W4317505581 cites W2970641574 @default.
- W4317505581 cites W2971724044 @default.
- W4317505581 cites W2977526300 @default.
- W4317505581 cites W2979826702 @default.
- W4317505581 cites W3001895040 @default.
- W4317505581 cites W3005969452 @default.
- W4317505581 cites W3030055324 @default.
- W4317505581 cites W3032990727 @default.
- W4317505581 cites W3034999214 @default.
- W4317505581 cites W3037029545 @default.
- W4317505581 cites W3037246227 @default.
- W4317505581 cites W3097482582 @default.
- W4317505581 cites W3102476541 @default.
- W4317505581 cites W3104758113 @default.
- W4317505581 cites W3110930594 @default.
- W4317505581 cites W3119467012 @default.
- W4317505581 cites W3119583862 @default.
- W4317505581 cites W3128372883 @default.
- W4317505581 cites W3148001275 @default.
- W4317505581 cites W3153854677 @default.
- W4317505581 cites W3176457774 @default.
- W4317505581 cites W3200286571 @default.
- W4317505581 cites W3211064917 @default.
- W4317505581 cites W3212591930 @default.
- W4317505581 cites W4206512241 @default.
- W4317505581 cites W4213370678 @default.
- W4317505581 cites W4244471710 @default.
- W4317505581 cites W4285405183 @default.
- W4317505581 doi "https://doi.org/10.3390/math11030508" @default.
- W4317505581 hasPublicationYear "2023" @default.
- W4317505581 type Work @default.
- W4317505581 citedByCount "3" @default.
- W4317505581 countsByYear W43175055812023 @default.
- W4317505581 crossrefType "journal-article" @default.
- W4317505581 hasAuthorship W4317505581A5007725540 @default.
- W4317505581 hasAuthorship W4317505581A5026015539 @default.
- W4317505581 hasBestOaLocation W43175055811 @default.
- W4317505581 hasConcept C108827166 @default.
- W4317505581 hasConcept C119513131 @default.
- W4317505581 hasConcept C134698397 @default.
- W4317505581 hasConcept C136764020 @default.
- W4317505581 hasConcept C151730666 @default.
- W4317505581 hasConcept C154945302 @default.
- W4317505581 hasConcept C17744445 @default.
- W4317505581 hasConcept C199539241 @default.
- W4317505581 hasConcept C23123220 @default.
- W4317505581 hasConcept C2522767166 @default.
- W4317505581 hasConcept C2776552730 @default.
- W4317505581 hasConcept C2776990098 @default.
- W4317505581 hasConcept C2779343474 @default.
- W4317505581 hasConcept C2779756789 @default.
- W4317505581 hasConcept C38652104 @default.
- W4317505581 hasConcept C41008148 @default.
- W4317505581 hasConcept C518677369 @default.
- W4317505581 hasConcept C86803240 @default.
- W4317505581 hasConcept C94625758 @default.
- W4317505581 hasConceptScore W4317505581C108827166 @default.
- W4317505581 hasConceptScore W4317505581C119513131 @default.
- W4317505581 hasConceptScore W4317505581C134698397 @default.
- W4317505581 hasConceptScore W4317505581C136764020 @default.
- W4317505581 hasConceptScore W4317505581C151730666 @default.
- W4317505581 hasConceptScore W4317505581C154945302 @default.
- W4317505581 hasConceptScore W4317505581C17744445 @default.
- W4317505581 hasConceptScore W4317505581C199539241 @default.
- W4317505581 hasConceptScore W4317505581C23123220 @default.
- W4317505581 hasConceptScore W4317505581C2522767166 @default.
- W4317505581 hasConceptScore W4317505581C2776552730 @default.
- W4317505581 hasConceptScore W4317505581C2776990098 @default.
- W4317505581 hasConceptScore W4317505581C2779343474 @default.
- W4317505581 hasConceptScore W4317505581C2779756789 @default.
- W4317505581 hasConceptScore W4317505581C38652104 @default.
- W4317505581 hasConceptScore W4317505581C41008148 @default.
- W4317505581 hasConceptScore W4317505581C518677369 @default.
- W4317505581 hasConceptScore W4317505581C86803240 @default.