Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317508758> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4317508758 endingPage "285" @default.
- W4317508758 startingPage "285" @default.
- W4317508758 abstract "After a lengthy period of scouring, the reinforced concrete surface of the dam spillway (i.e., drift spillways and flood discharge spillways) will suffer from deterioration and damage. Regular manual inspection is time-consuming and dangerous. This paper presents a robotic solution to detect automatically, count defect instance numbers, and reconstruct the surface of dam spillways by incorporating the deep learning method with a visual 3D reconstruction method. The lack of a real dam defect dataset and incomplete registration of minor defects on the 3D mesh model in fusion step are two challenges addressed in the paper. We created a multi-class semantic segmentation dataset of 1711 images (with resolutions of 848 × 480 and 1280 × 720 pixels) acquired by a wall-climbing robot, including cracks, erosion, spots, patched areas, and power safety cable. Then, the architecture of the U-net is modified with pixel-adaptive convolution (PAC) and conditional random field (CRF) to segment different scales of defects, trained, validated, and tested using this dataset. The reconstruction and recovery of minor defect instances in the flow surface and sidewall are facilitated using a keyframe back-projection method. By generating an instance adjacency matrix within the class, the intersection over union (IoU) of 3D voxels is calculated to fuse multiple instances. Our segmentation model achieves an average IoU of 60% for five defect class. For the surface model’s semantic recovery and instance statistics, our method achieves accurate statistics of patched area and erosion instances in an environment of 200 m2, and the average absolute error of the number of spots and cracks has reduced from the original 13.5 to 3.5." @default.
- W4317508758 created "2023-01-20" @default.
- W4317508758 creator A5004967576 @default.
- W4317508758 creator A5046543349 @default.
- W4317508758 creator A5051138008 @default.
- W4317508758 creator A5088314680 @default.
- W4317508758 date "2023-01-18" @default.
- W4317508758 modified "2023-10-14" @default.
- W4317508758 title "Multiple Defects Inspection of Dam Spillway Surface Using Deep Learning and 3D Reconstruction Techniques" @default.
- W4317508758 cites W1901129140 @default.
- W4317508758 cites W2066851857 @default.
- W4317508758 cites W2086373542 @default.
- W4317508758 cites W2097696373 @default.
- W4317508758 cites W2099940712 @default.
- W4317508758 cites W2560023338 @default.
- W4317508758 cites W2743860331 @default.
- W4317508758 cites W2750167008 @default.
- W4317508758 cites W2772901877 @default.
- W4317508758 cites W2792249564 @default.
- W4317508758 cites W2795587607 @default.
- W4317508758 cites W2801492038 @default.
- W4317508758 cites W2809201642 @default.
- W4317508758 cites W2893389996 @default.
- W4317508758 cites W2908667960 @default.
- W4317508758 cites W2922073063 @default.
- W4317508758 cites W2963351448 @default.
- W4317508758 cites W2963830453 @default.
- W4317508758 cites W2963870605 @default.
- W4317508758 cites W2964309882 @default.
- W4317508758 cites W2975124467 @default.
- W4317508758 cites W3003218534 @default.
- W4317508758 cites W3024912007 @default.
- W4317508758 cites W3025800305 @default.
- W4317508758 cites W3102327032 @default.
- W4317508758 cites W3120695505 @default.
- W4317508758 cites W3165083221 @default.
- W4317508758 cites W3206772186 @default.
- W4317508758 cites W4226146298 @default.
- W4317508758 cites W4233857083 @default.
- W4317508758 cites W4234127492 @default.
- W4317508758 cites W4307957701 @default.
- W4317508758 cites W845365781 @default.
- W4317508758 doi "https://doi.org/10.3390/buildings13020285" @default.
- W4317508758 hasPublicationYear "2023" @default.
- W4317508758 type Work @default.
- W4317508758 citedByCount "1" @default.
- W4317508758 countsByYear W43175087582023 @default.
- W4317508758 crossrefType "journal-article" @default.
- W4317508758 hasAuthorship W4317508758A5004967576 @default.
- W4317508758 hasAuthorship W4317508758A5046543349 @default.
- W4317508758 hasAuthorship W4317508758A5051138008 @default.
- W4317508758 hasAuthorship W4317508758A5088314680 @default.
- W4317508758 hasBestOaLocation W43175087581 @default.
- W4317508758 hasConcept C11413529 @default.
- W4317508758 hasConcept C127413603 @default.
- W4317508758 hasConcept C146978453 @default.
- W4317508758 hasConcept C153180895 @default.
- W4317508758 hasConcept C154945302 @default.
- W4317508758 hasConcept C160633673 @default.
- W4317508758 hasConcept C187320778 @default.
- W4317508758 hasConcept C2779506771 @default.
- W4317508758 hasConcept C31972630 @default.
- W4317508758 hasConcept C41008148 @default.
- W4317508758 hasConcept C57493831 @default.
- W4317508758 hasConcept C64543145 @default.
- W4317508758 hasConcept C89600930 @default.
- W4317508758 hasConceptScore W4317508758C11413529 @default.
- W4317508758 hasConceptScore W4317508758C127413603 @default.
- W4317508758 hasConceptScore W4317508758C146978453 @default.
- W4317508758 hasConceptScore W4317508758C153180895 @default.
- W4317508758 hasConceptScore W4317508758C154945302 @default.
- W4317508758 hasConceptScore W4317508758C160633673 @default.
- W4317508758 hasConceptScore W4317508758C187320778 @default.
- W4317508758 hasConceptScore W4317508758C2779506771 @default.
- W4317508758 hasConceptScore W4317508758C31972630 @default.
- W4317508758 hasConceptScore W4317508758C41008148 @default.
- W4317508758 hasConceptScore W4317508758C57493831 @default.
- W4317508758 hasConceptScore W4317508758C64543145 @default.
- W4317508758 hasConceptScore W4317508758C89600930 @default.
- W4317508758 hasIssue "2" @default.
- W4317508758 hasLocation W43175087581 @default.
- W4317508758 hasLocation W43175087582 @default.
- W4317508758 hasOpenAccess W4317508758 @default.
- W4317508758 hasPrimaryLocation W43175087581 @default.
- W4317508758 hasRelatedWork W121273120 @default.
- W4317508758 hasRelatedWork W1669643531 @default.
- W4317508758 hasRelatedWork W2005437358 @default.
- W4317508758 hasRelatedWork W2008656436 @default.
- W4317508758 hasRelatedWork W2023558673 @default.
- W4317508758 hasRelatedWork W2134924024 @default.
- W4317508758 hasRelatedWork W2337415362 @default.
- W4317508758 hasRelatedWork W2517104666 @default.
- W4317508758 hasRelatedWork W2740820121 @default.
- W4317508758 hasRelatedWork W4312857205 @default.
- W4317508758 hasVolume "13" @default.
- W4317508758 isParatext "false" @default.
- W4317508758 isRetracted "false" @default.
- W4317508758 workType "article" @default.