Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317509941> ?p ?o ?g. }
- W4317509941 abstract "MicroRNAs (miRNAs) are critical regulators of gene expression in healthy and diseased states, and numerous studies have established their tremendous potential as a tool for improving the diagnosis of Type 2 Diabetes Mellitus (T2D) and its comorbidities. In this regard, we computationally identify novel top-ranked hub miRNAs that might be involved in T2D. We accomplish this via two strategies: 1) by ranking miRNAs based on the number of T2D differentially expressed genes (DEGs) they target, and 2) using only the common DEGs between T2D and its comorbidity, Alzheimer’s disease (AD) to predict and rank miRNA. Then classifier models are built using the DEGs targeted by each miRNA as features. Here, we show the T2D DEGs targeted by hsa-mir-1-3p, hsa-mir-16-5p, hsa-mir-124-3p, hsa-mir-34a-5p, hsa-let-7b-5p, hsa-mir-155-5p, hsa-mir-107, hsa-mir-27a-3p, hsa-mir-129-2-3p, and hsa-mir-146a-5p are capable of distinguishing T2D samples from the controls, which serves as a measure of confidence in the miRNAs’ potential role in T2D progression. Moreover, for the second strategy, we show other critical miRNAs can be made apparent through the disease’s comorbidities, and in this case, overall, the hsa-mir-103a-3p models work well for all the datasets, especially in T2D, while the hsa-mir-124-3p models achieved the best scores for the AD datasets. To the best of our knowledge, this is the first study that used predicted miRNAs to determine the features that can separate the diseased samples (T2D or AD) from the normal ones, instead of using conventional non-biology-based feature selection methods." @default.
- W4317509941 created "2023-01-20" @default.
- W4317509941 creator A5004449789 @default.
- W4317509941 creator A5016213975 @default.
- W4317509941 creator A5047057719 @default.
- W4317509941 creator A5072059580 @default.
- W4317509941 creator A5072077826 @default.
- W4317509941 creator A5085529612 @default.
- W4317509941 creator A5088230370 @default.
- W4317509941 date "2023-01-19" @default.
- W4317509941 modified "2023-10-14" @default.
- W4317509941 title "Type 2 Diabetes Mellitus and its comorbidity, Alzheimer’s disease: Identifying critical microRNA using machine learning" @default.
- W4317509941 cites W1121472350 @default.
- W4317509941 cites W137596950 @default.
- W4317509941 cites W1530934778 @default.
- W4317509941 cites W1970866871 @default.
- W4317509941 cites W1971881316 @default.
- W4317509941 cites W1995082021 @default.
- W4317509941 cites W2006247279 @default.
- W4317509941 cites W2026491416 @default.
- W4317509941 cites W2026570544 @default.
- W4317509941 cites W2041509376 @default.
- W4317509941 cites W2043127046 @default.
- W4317509941 cites W2044327593 @default.
- W4317509941 cites W2050869737 @default.
- W4317509941 cites W2053835153 @default.
- W4317509941 cites W2057860524 @default.
- W4317509941 cites W2075317528 @default.
- W4317509941 cites W2080312294 @default.
- W4317509941 cites W2083381199 @default.
- W4317509941 cites W2106210472 @default.
- W4317509941 cites W2109120098 @default.
- W4317509941 cites W2111722183 @default.
- W4317509941 cites W2113031450 @default.
- W4317509941 cites W2113123068 @default.
- W4317509941 cites W2114729479 @default.
- W4317509941 cites W2114926230 @default.
- W4317509941 cites W2120456037 @default.
- W4317509941 cites W2122929112 @default.
- W4317509941 cites W2123250471 @default.
- W4317509941 cites W2123788703 @default.
- W4317509941 cites W2126320063 @default.
- W4317509941 cites W2128768066 @default.
- W4317509941 cites W2133588081 @default.
- W4317509941 cites W2134118500 @default.
- W4317509941 cites W2134629862 @default.
- W4317509941 cites W2136970997 @default.
- W4317509941 cites W2146026944 @default.
- W4317509941 cites W2147663252 @default.
- W4317509941 cites W2148143831 @default.
- W4317509941 cites W2149785901 @default.
- W4317509941 cites W2153234291 @default.
- W4317509941 cites W2163199119 @default.
- W4317509941 cites W2168893761 @default.
- W4317509941 cites W2208481176 @default.
- W4317509941 cites W2338651870 @default.
- W4317509941 cites W2341128841 @default.
- W4317509941 cites W2345356016 @default.
- W4317509941 cites W2396917424 @default.
- W4317509941 cites W2401934785 @default.
- W4317509941 cites W2562584466 @default.
- W4317509941 cites W2618175351 @default.
- W4317509941 cites W2626411548 @default.
- W4317509941 cites W2754782024 @default.
- W4317509941 cites W2755052264 @default.
- W4317509941 cites W2762488802 @default.
- W4317509941 cites W2769915960 @default.
- W4317509941 cites W2883686589 @default.
- W4317509941 cites W2888598589 @default.
- W4317509941 cites W2904291951 @default.
- W4317509941 cites W2913986859 @default.
- W4317509941 cites W2918411432 @default.
- W4317509941 cites W2921458067 @default.
- W4317509941 cites W2922415061 @default.
- W4317509941 cites W2971696794 @default.
- W4317509941 cites W2972869264 @default.
- W4317509941 cites W2978378090 @default.
- W4317509941 cites W2989773854 @default.
- W4317509941 cites W3024271698 @default.
- W4317509941 cites W3029717128 @default.
- W4317509941 cites W3036301115 @default.
- W4317509941 cites W3042099854 @default.
- W4317509941 cites W3118146391 @default.
- W4317509941 cites W3118346487 @default.
- W4317509941 cites W3127263108 @default.
- W4317509941 cites W3145969289 @default.
- W4317509941 cites W3184777549 @default.
- W4317509941 cites W4214583296 @default.
- W4317509941 cites W4235479662 @default.
- W4317509941 cites W4247544731 @default.
- W4317509941 doi "https://doi.org/10.3389/fendo.2022.1084656" @default.
- W4317509941 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36743910" @default.
- W4317509941 hasPublicationYear "2023" @default.
- W4317509941 type Work @default.
- W4317509941 citedByCount "2" @default.
- W4317509941 countsByYear W43175099412023 @default.
- W4317509941 crossrefType "journal-article" @default.
- W4317509941 hasAuthorship W4317509941A5004449789 @default.
- W4317509941 hasAuthorship W4317509941A5016213975 @default.
- W4317509941 hasAuthorship W4317509941A5047057719 @default.