Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317515511> ?p ?o ?g. }
- W4317515511 endingPage "10" @default.
- W4317515511 startingPage "1" @default.
- W4317515511 abstract "The polymerization process produces industrially important products; hence, its monitoring and control are of paramount importance. However, the nonavailability of real-time (on-demand) measurement of quality variables gives rise to difficulties in achieving effective monitoring and control. To overcome this hurdle, a novel multioutput soft sensor algorithm is proposed for the simultaneous estimation of four quality variables [rate of esterification, degree of polymerization, average molecular weight, and melt viscosity index (MVI)] of the industrial polymerization process. The proposed soft sensor is established on canonical correlation analysis (CCA) with the help of deep-learning techniques. It is tested through process data collected from a real polyester plant. The results of the proposed soft sensor are compared with those of the soft sensors constructed using state-of-the-art machine-learning algorithms. It is found that the proposed soft sensor shows superior prediction accuracy. The proposed soft sensor has advantages such as the ability to extract complex feature extraction, is capable of dealing with overfitting, and offers quick estimations for the quality variables of interest. In addition, both statistical analysis and sensitivity analysis are carried out on the proposed soft sensor." @default.
- W4317515511 created "2023-01-20" @default.
- W4317515511 creator A5001762132 @default.
- W4317515511 creator A5019419996 @default.
- W4317515511 creator A5054096071 @default.
- W4317515511 creator A5071540194 @default.
- W4317515511 creator A5089236732 @default.
- W4317515511 date "2023-01-01" @default.
- W4317515511 modified "2023-10-05" @default.
- W4317515511 title "ConvLSTM and Self-Attention Aided Canonical Correlation Analysis for Multioutput Soft Sensor Modeling" @default.
- W4317515511 cites W1968763291 @default.
- W4317515511 cites W1997175427 @default.
- W4317515511 cites W2010408198 @default.
- W4317515511 cites W2062368510 @default.
- W4317515511 cites W2073447193 @default.
- W4317515511 cites W2075315159 @default.
- W4317515511 cites W2076423279 @default.
- W4317515511 cites W2079692514 @default.
- W4317515511 cites W2096976414 @default.
- W4317515511 cites W2101926813 @default.
- W4317515511 cites W2143399885 @default.
- W4317515511 cites W2144097240 @default.
- W4317515511 cites W2157005917 @default.
- W4317515511 cites W2256679588 @default.
- W4317515511 cites W2461415590 @default.
- W4317515511 cites W2517194566 @default.
- W4317515511 cites W2539756354 @default.
- W4317515511 cites W2580937131 @default.
- W4317515511 cites W2588998538 @default.
- W4317515511 cites W2598225641 @default.
- W4317515511 cites W2599566251 @default.
- W4317515511 cites W2602750048 @default.
- W4317515511 cites W2742763523 @default.
- W4317515511 cites W2791758405 @default.
- W4317515511 cites W2884121498 @default.
- W4317515511 cites W2887983432 @default.
- W4317515511 cites W2941834879 @default.
- W4317515511 cites W2942496699 @default.
- W4317515511 cites W2946994806 @default.
- W4317515511 cites W2971407654 @default.
- W4317515511 cites W2971929219 @default.
- W4317515511 cites W2979184896 @default.
- W4317515511 cites W2979860990 @default.
- W4317515511 cites W2980608982 @default.
- W4317515511 cites W2982676282 @default.
- W4317515511 cites W2984148598 @default.
- W4317515511 cites W2988720209 @default.
- W4317515511 cites W2995696070 @default.
- W4317515511 cites W3002630677 @default.
- W4317515511 cites W3004395473 @default.
- W4317515511 cites W3015966228 @default.
- W4317515511 cites W3016077482 @default.
- W4317515511 cites W3016192422 @default.
- W4317515511 cites W3018110575 @default.
- W4317515511 cites W3025505824 @default.
- W4317515511 cites W3028207611 @default.
- W4317515511 cites W3030481147 @default.
- W4317515511 cites W3034190797 @default.
- W4317515511 cites W3035328458 @default.
- W4317515511 cites W3043554402 @default.
- W4317515511 cites W3093719170 @default.
- W4317515511 cites W3094594436 @default.
- W4317515511 cites W3108942816 @default.
- W4317515511 cites W3134093839 @default.
- W4317515511 cites W3136823424 @default.
- W4317515511 cites W3152597052 @default.
- W4317515511 cites W3152632945 @default.
- W4317515511 cites W3157761116 @default.
- W4317515511 cites W3159581095 @default.
- W4317515511 cites W3165587471 @default.
- W4317515511 cites W3171438403 @default.
- W4317515511 cites W3196610154 @default.
- W4317515511 cites W3197588717 @default.
- W4317515511 cites W3210951423 @default.
- W4317515511 cites W3217429229 @default.
- W4317515511 cites W4214676882 @default.
- W4317515511 cites W4249992252 @default.
- W4317515511 cites W4285259398 @default.
- W4317515511 cites W4288771029 @default.
- W4317515511 cites W4292347910 @default.
- W4317515511 cites W4294982722 @default.
- W4317515511 cites W4296916682 @default.
- W4317515511 cites W4313067792 @default.
- W4317515511 doi "https://doi.org/10.1109/tim.2022.3225004" @default.
- W4317515511 hasPublicationYear "2023" @default.
- W4317515511 type Work @default.
- W4317515511 citedByCount "0" @default.
- W4317515511 crossrefType "journal-article" @default.
- W4317515511 hasAuthorship W4317515511A5001762132 @default.
- W4317515511 hasAuthorship W4317515511A5019419996 @default.
- W4317515511 hasAuthorship W4317515511A5054096071 @default.
- W4317515511 hasAuthorship W4317515511A5071540194 @default.
- W4317515511 hasAuthorship W4317515511A5089236732 @default.
- W4317515511 hasConcept C111919701 @default.
- W4317515511 hasConcept C115575686 @default.
- W4317515511 hasConcept C127413603 @default.
- W4317515511 hasConcept C140073362 @default.
- W4317515511 hasConcept C153874254 @default.