Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317520070> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4317520070 abstract "To solve the problem of the lack of representativeness of the training set and the poor prediction accuracy due to the limited number of training samples when the machine learning method is used for the classification and prediction of pharmacokinetic indicators, this paper proposes a 1DCNN-Attention concentration prediction model optimized by the sparrow search algorithm (SSA). First, the SMOTE method is used to expand the small sample experimental data to make the data diverse and representative. Then a one-dimensional convolutional neural network (1DCNN) model is established, and the attention mechanism is introduced to calculate the weight of each variable for dividing the importance of each pharmacokinetic indicator by the output drug concentration. The SSA algorithm was used to optimize the parameters in the model to improve the prediction accuracy after data expansion. Taking the pharmacokinetic model of phenobarbital (PHB) combined with Cynanchum otophyllum saponins to treat epilepsy as an example, the concentration changes of PHB were predicted and the effectiveness of the method was verified. The results show that the proposed model has a better prediction effect than other methods." @default.
- W4317520070 created "2023-01-20" @default.
- W4317520070 creator A5001303073 @default.
- W4317520070 creator A5013890190 @default.
- W4317520070 creator A5018616205 @default.
- W4317520070 date "2023-02-01" @default.
- W4317520070 modified "2023-10-14" @default.
- W4317520070 title "A pharmacokinetic model based on the SSA-1DCNN-Attention method" @default.
- W4317520070 cites W1786686177 @default.
- W4317520070 cites W2047094503 @default.
- W4317520070 cites W2061438946 @default.
- W4317520070 cites W2079675963 @default.
- W4317520070 cites W2947946942 @default.
- W4317520070 cites W2962949934 @default.
- W4317520070 cites W2998553334 @default.
- W4317520070 cites W3028425414 @default.
- W4317520070 cites W3100777112 @default.
- W4317520070 doi "https://doi.org/10.1142/s021972002350004x" @default.
- W4317520070 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36884017" @default.
- W4317520070 hasPublicationYear "2023" @default.
- W4317520070 type Work @default.
- W4317520070 citedByCount "0" @default.
- W4317520070 crossrefType "journal-article" @default.
- W4317520070 hasAuthorship W4317520070A5001303073 @default.
- W4317520070 hasAuthorship W4317520070A5013890190 @default.
- W4317520070 hasAuthorship W4317520070A5018616205 @default.
- W4317520070 hasBestOaLocation W43175200701 @default.
- W4317520070 hasConcept C119857082 @default.
- W4317520070 hasConcept C124101348 @default.
- W4317520070 hasConcept C154945302 @default.
- W4317520070 hasConcept C177264268 @default.
- W4317520070 hasConcept C199360897 @default.
- W4317520070 hasConcept C41008148 @default.
- W4317520070 hasConcept C50644808 @default.
- W4317520070 hasConcept C51632099 @default.
- W4317520070 hasConcept C58489278 @default.
- W4317520070 hasConcept C81363708 @default.
- W4317520070 hasConceptScore W4317520070C119857082 @default.
- W4317520070 hasConceptScore W4317520070C124101348 @default.
- W4317520070 hasConceptScore W4317520070C154945302 @default.
- W4317520070 hasConceptScore W4317520070C177264268 @default.
- W4317520070 hasConceptScore W4317520070C199360897 @default.
- W4317520070 hasConceptScore W4317520070C41008148 @default.
- W4317520070 hasConceptScore W4317520070C50644808 @default.
- W4317520070 hasConceptScore W4317520070C51632099 @default.
- W4317520070 hasConceptScore W4317520070C58489278 @default.
- W4317520070 hasConceptScore W4317520070C81363708 @default.
- W4317520070 hasFunder F4320321001 @default.
- W4317520070 hasIssue "01" @default.
- W4317520070 hasLocation W43175200701 @default.
- W4317520070 hasLocation W43175200702 @default.
- W4317520070 hasOpenAccess W4317520070 @default.
- W4317520070 hasPrimaryLocation W43175200701 @default.
- W4317520070 hasRelatedWork W2250140425 @default.
- W4317520070 hasRelatedWork W2347880541 @default.
- W4317520070 hasRelatedWork W2953116260 @default.
- W4317520070 hasRelatedWork W3005704161 @default.
- W4317520070 hasRelatedWork W3021430260 @default.
- W4317520070 hasRelatedWork W3027997911 @default.
- W4317520070 hasRelatedWork W3081496756 @default.
- W4317520070 hasRelatedWork W3082705149 @default.
- W4317520070 hasRelatedWork W3132346564 @default.
- W4317520070 hasRelatedWork W4287776258 @default.
- W4317520070 hasVolume "21" @default.
- W4317520070 isParatext "false" @default.
- W4317520070 isRetracted "false" @default.
- W4317520070 workType "article" @default.