Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317528614> ?p ?o ?g. }
- W4317528614 endingPage "104430" @default.
- W4317528614 startingPage "104430" @default.
- W4317528614 abstract "Despite deep learning's wide adoption in dental artificial intelligence (AI) research, researchers from other dental fields and, more so, dental professionals may find it challenging to understand and interpret deep learning studies, their employed methods, and outcomes. The objective of this primer is to explain the basic concept of deep learning. It will lay out the commonly used terms, and describe different deep learning approaches, their methods, and outcomes. Our research is based on the latest review studies, medical primers, as well as the state-of-the-art research on AI and deep learning, which have been gathered in the current study. In this study, a basic understanding of deep learning models and various approaches to deep learning is presented. An overview of data management strategies for deep learning projects is presented, including data collection, data curation, data annotation, and data preprocessing. Additionally, we provided a step-by-step guide for completing a real-world project. Researchers and clinicians can benefit from this study by gaining insight into deep learning. It can be used to critically appraise existing work or plan new deep learning projects. This study may be useful to dental researchers and professionals who are assessing and appraising deep learning studies within the field of dentistry." @default.
- W4317528614 created "2023-01-20" @default.
- W4317528614 creator A5015664157 @default.
- W4317528614 creator A5063934370 @default.
- W4317528614 creator A5065895211 @default.
- W4317528614 creator A5074481863 @default.
- W4317528614 creator A5076024917 @default.
- W4317528614 date "2023-03-01" @default.
- W4317528614 modified "2023-10-03" @default.
- W4317528614 title "Deep learning: A primer for dentists and dental researchers" @default.
- W4317528614 cites W1995341919 @default.
- W4317528614 cites W1996362118 @default.
- W4317528614 cites W2013483606 @default.
- W4317528614 cites W2016149791 @default.
- W4317528614 cites W2022847609 @default.
- W4317528614 cites W2052222137 @default.
- W4317528614 cites W2062884568 @default.
- W4317528614 cites W2112796928 @default.
- W4317528614 cites W2275865840 @default.
- W4317528614 cites W2416970428 @default.
- W4317528614 cites W2592929672 @default.
- W4317528614 cites W2767236661 @default.
- W4317528614 cites W2809254203 @default.
- W4317528614 cites W2888484772 @default.
- W4317528614 cites W2919115771 @default.
- W4317528614 cites W2954996726 @default.
- W4317528614 cites W2962895999 @default.
- W4317528614 cites W2995646698 @default.
- W4317528614 cites W3007455870 @default.
- W4317528614 cites W3013294478 @default.
- W4317528614 cites W3014246070 @default.
- W4317528614 cites W3017228718 @default.
- W4317528614 cites W3033545112 @default.
- W4317528614 cites W3108706519 @default.
- W4317528614 cites W3120395777 @default.
- W4317528614 cites W3125570879 @default.
- W4317528614 cites W3126531098 @default.
- W4317528614 cites W3130719814 @default.
- W4317528614 cites W3134474325 @default.
- W4317528614 cites W3136552952 @default.
- W4317528614 cites W3151286594 @default.
- W4317528614 cites W3155203876 @default.
- W4317528614 cites W3157349954 @default.
- W4317528614 cites W3165835753 @default.
- W4317528614 cites W3167066869 @default.
- W4317528614 cites W3174105206 @default.
- W4317528614 cites W3182099217 @default.
- W4317528614 cites W3182169824 @default.
- W4317528614 cites W3187675958 @default.
- W4317528614 cites W3199647575 @default.
- W4317528614 cites W3200759624 @default.
- W4317528614 cites W3201000121 @default.
- W4317528614 cites W3202722194 @default.
- W4317528614 cites W3216543318 @default.
- W4317528614 cites W4220652840 @default.
- W4317528614 cites W4220717038 @default.
- W4317528614 cites W4220726078 @default.
- W4317528614 cites W4223643440 @default.
- W4317528614 cites W4225005504 @default.
- W4317528614 cites W4229448187 @default.
- W4317528614 cites W4280580691 @default.
- W4317528614 cites W4283758436 @default.
- W4317528614 cites W4285988360 @default.
- W4317528614 cites W4288052134 @default.
- W4317528614 cites W4291377720 @default.
- W4317528614 cites W4293067524 @default.
- W4317528614 doi "https://doi.org/10.1016/j.jdent.2023.104430" @default.
- W4317528614 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36682721" @default.
- W4317528614 hasPublicationYear "2023" @default.
- W4317528614 type Work @default.
- W4317528614 citedByCount "6" @default.
- W4317528614 countsByYear W43175286142023 @default.
- W4317528614 crossrefType "journal-article" @default.
- W4317528614 hasAuthorship W4317528614A5015664157 @default.
- W4317528614 hasAuthorship W4317528614A5063934370 @default.
- W4317528614 hasAuthorship W4317528614A5065895211 @default.
- W4317528614 hasAuthorship W4317528614A5074481863 @default.
- W4317528614 hasAuthorship W4317528614A5076024917 @default.
- W4317528614 hasConcept C108583219 @default.
- W4317528614 hasConcept C154945302 @default.
- W4317528614 hasConcept C202444582 @default.
- W4317528614 hasConcept C2522767166 @default.
- W4317528614 hasConcept C33923547 @default.
- W4317528614 hasConcept C41008148 @default.
- W4317528614 hasConcept C91632574 @default.
- W4317528614 hasConcept C9652623 @default.
- W4317528614 hasConceptScore W4317528614C108583219 @default.
- W4317528614 hasConceptScore W4317528614C154945302 @default.
- W4317528614 hasConceptScore W4317528614C202444582 @default.
- W4317528614 hasConceptScore W4317528614C2522767166 @default.
- W4317528614 hasConceptScore W4317528614C33923547 @default.
- W4317528614 hasConceptScore W4317528614C41008148 @default.
- W4317528614 hasConceptScore W4317528614C91632574 @default.
- W4317528614 hasConceptScore W4317528614C9652623 @default.
- W4317528614 hasLocation W43175286141 @default.
- W4317528614 hasLocation W43175286142 @default.
- W4317528614 hasOpenAccess W4317528614 @default.
- W4317528614 hasPrimaryLocation W43175286141 @default.