Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317548403> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4317548403 abstract "We give an exact coefficients formula of any infinite product of power series with constant term equal to $1$, by using structures from partitions of integers and permutation groups. This is an universal theorem for various of Binomial-type theorems in many sense. In particular, we give the new formulas as the double counting of Bell polynomial, Binomial Theorem and Multinomial Theorem." @default.
- W4317548403 created "2023-01-20" @default.
- W4317548403 creator A5011417406 @default.
- W4317548403 creator A5068616614 @default.
- W4317548403 date "2023-01-17" @default.
- W4317548403 modified "2023-09-27" @default.
- W4317548403 title "A Generalization of Bell Polynomials and Multinomial Expansions via Permutations on Partitions, by Perturbation expansions of Functional Determinants" @default.
- W4317548403 doi "https://doi.org/10.48550/arxiv.2301.07278" @default.
- W4317548403 hasPublicationYear "2023" @default.
- W4317548403 type Work @default.
- W4317548403 citedByCount "0" @default.
- W4317548403 crossrefType "posted-content" @default.
- W4317548403 hasAuthorship W4317548403A5011417406 @default.
- W4317548403 hasAuthorship W4317548403A5068616614 @default.
- W4317548403 hasBestOaLocation W43175484031 @default.
- W4317548403 hasConcept C105795698 @default.
- W4317548403 hasConcept C114614502 @default.
- W4317548403 hasConcept C118615104 @default.
- W4317548403 hasConcept C121332964 @default.
- W4317548403 hasConcept C134306372 @default.
- W4317548403 hasConcept C154485487 @default.
- W4317548403 hasConcept C177148314 @default.
- W4317548403 hasConcept C180099792 @default.
- W4317548403 hasConcept C192065140 @default.
- W4317548403 hasConcept C201292218 @default.
- W4317548403 hasConcept C202444582 @default.
- W4317548403 hasConcept C21308566 @default.
- W4317548403 hasConcept C24890656 @default.
- W4317548403 hasConcept C2781315470 @default.
- W4317548403 hasConcept C33923547 @default.
- W4317548403 hasConcept C34718186 @default.
- W4317548403 hasConceptScore W4317548403C105795698 @default.
- W4317548403 hasConceptScore W4317548403C114614502 @default.
- W4317548403 hasConceptScore W4317548403C118615104 @default.
- W4317548403 hasConceptScore W4317548403C121332964 @default.
- W4317548403 hasConceptScore W4317548403C134306372 @default.
- W4317548403 hasConceptScore W4317548403C154485487 @default.
- W4317548403 hasConceptScore W4317548403C177148314 @default.
- W4317548403 hasConceptScore W4317548403C180099792 @default.
- W4317548403 hasConceptScore W4317548403C192065140 @default.
- W4317548403 hasConceptScore W4317548403C201292218 @default.
- W4317548403 hasConceptScore W4317548403C202444582 @default.
- W4317548403 hasConceptScore W4317548403C21308566 @default.
- W4317548403 hasConceptScore W4317548403C24890656 @default.
- W4317548403 hasConceptScore W4317548403C2781315470 @default.
- W4317548403 hasConceptScore W4317548403C33923547 @default.
- W4317548403 hasConceptScore W4317548403C34718186 @default.
- W4317548403 hasLocation W43175484031 @default.
- W4317548403 hasLocation W43175484032 @default.
- W4317548403 hasOpenAccess W4317548403 @default.
- W4317548403 hasPrimaryLocation W43175484031 @default.
- W4317548403 hasRelatedWork W1585180308 @default.
- W4317548403 hasRelatedWork W2047523883 @default.
- W4317548403 hasRelatedWork W2076724961 @default.
- W4317548403 hasRelatedWork W2109628887 @default.
- W4317548403 hasRelatedWork W2490125744 @default.
- W4317548403 hasRelatedWork W2608265901 @default.
- W4317548403 hasRelatedWork W3202806984 @default.
- W4317548403 hasRelatedWork W4236627876 @default.
- W4317548403 hasRelatedWork W4297824647 @default.
- W4317548403 hasRelatedWork W4299286921 @default.
- W4317548403 isParatext "false" @default.
- W4317548403 isRetracted "false" @default.
- W4317548403 workType "article" @default.