Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317565500> ?p ?o ?g. }
- W4317565500 endingPage "1298" @default.
- W4317565500 startingPage "1284" @default.
- W4317565500 abstract "Big data and machine learning are driving Industry 4.0. In the current era of big data, numerous rich data sources are generating huge volumes of a wide variety of valuable data at a high velocity. Embedded in these big data are implicit, previously unknown, and potentially useful information and knowledge. This calls for data science, which makes good use of big data mining and analytics, machine learning, visualization, and related techniques to discover and visualize hidden gems. This may maximize the citizens' wealth and/or promote all society's health. As an important big data mining and analytics task, frequent pattern mining aims to discover interesting knowledge in the forms of frequently occurring sets of merchandise items or events. To enable users to get better understanding of the discovered patterns in a comprehensive manner, several data visualization and visual analytics tools have been proposed. This encyclopedia article focuses on visualization of big data, as well as association rules and frequent patterns discovered from these big data." @default.
- W4317565500 created "2023-01-21" @default.
- W4317565500 creator A5016113718 @default.
- W4317565500 date "2022-10-14" @default.
- W4317565500 modified "2023-09-27" @default.
- W4317565500 title "Big Data Visualization of Association Rules and Frequent Patterns" @default.
- W4317565500 cites W13191483 @default.
- W4317565500 cites W1498978191 @default.
- W4317565500 cites W1536848116 @default.
- W4317565500 cites W1565487242 @default.
- W4317565500 cites W1585397009 @default.
- W4317565500 cites W1748422605 @default.
- W4317565500 cites W1794915560 @default.
- W4317565500 cites W1964492476 @default.
- W4317565500 cites W1988471114 @default.
- W4317565500 cites W1992896169 @default.
- W4317565500 cites W2045487373 @default.
- W4317565500 cites W2046705420 @default.
- W4317565500 cites W2059122500 @default.
- W4317565500 cites W2072506551 @default.
- W4317565500 cites W207625154 @default.
- W4317565500 cites W2120329225 @default.
- W4317565500 cites W2134056613 @default.
- W4317565500 cites W2138311920 @default.
- W4317565500 cites W2151865696 @default.
- W4317565500 cites W2164160556 @default.
- W4317565500 cites W2166559705 @default.
- W4317565500 cites W2168846201 @default.
- W4317565500 cites W2172186225 @default.
- W4317565500 cites W2276717191 @default.
- W4317565500 cites W2293888039 @default.
- W4317565500 cites W2491486088 @default.
- W4317565500 cites W2529573579 @default.
- W4317565500 cites W2575557354 @default.
- W4317565500 cites W2586111535 @default.
- W4317565500 cites W2900718729 @default.
- W4317565500 cites W2910330388 @default.
- W4317565500 cites W2910896796 @default.
- W4317565500 cites W2921519987 @default.
- W4317565500 cites W2940272626 @default.
- W4317565500 cites W2950283932 @default.
- W4317565500 cites W2952400952 @default.
- W4317565500 cites W2957396577 @default.
- W4317565500 cites W2979443898 @default.
- W4317565500 cites W3013050088 @default.
- W4317565500 cites W3013273263 @default.
- W4317565500 cites W3040028709 @default.
- W4317565500 cites W3162794770 @default.
- W4317565500 cites W3176332457 @default.
- W4317565500 cites W3176794375 @default.
- W4317565500 cites W3191493789 @default.
- W4317565500 cites W3200730881 @default.
- W4317565500 cites W3204413783 @default.
- W4317565500 cites W3207258229 @default.
- W4317565500 cites W3208630418 @default.
- W4317565500 cites W3210046716 @default.
- W4317565500 cites W3211552339 @default.
- W4317565500 cites W4205648267 @default.
- W4317565500 cites W4206781581 @default.
- W4317565500 cites W4214675004 @default.
- W4317565500 cites W4223497277 @default.
- W4317565500 cites W4226357516 @default.
- W4317565500 cites W4226385282 @default.
- W4317565500 cites W4252403066 @default.
- W4317565500 cites W4254264337 @default.
- W4317565500 cites W4301709227 @default.
- W4317565500 cites W4317707907 @default.
- W4317565500 cites W666325486 @default.
- W4317565500 cites W94191208 @default.
- W4317565500 cites W3135226178 @default.
- W4317565500 doi "https://doi.org/10.4018/978-1-7998-9220-5.ch075" @default.
- W4317565500 hasPublicationYear "2022" @default.
- W4317565500 type Work @default.
- W4317565500 citedByCount "0" @default.
- W4317565500 crossrefType "book-chapter" @default.
- W4317565500 hasAuthorship W4317565500A5016113718 @default.
- W4317565500 hasConcept C120567893 @default.
- W4317565500 hasConcept C124101348 @default.
- W4317565500 hasConcept C136197465 @default.
- W4317565500 hasConcept C148863701 @default.
- W4317565500 hasConcept C154945302 @default.
- W4317565500 hasConcept C161191863 @default.
- W4317565500 hasConcept C172367668 @default.
- W4317565500 hasConcept C193524817 @default.
- W4317565500 hasConcept C2522767166 @default.
- W4317565500 hasConcept C36464697 @default.
- W4317565500 hasConcept C41008148 @default.
- W4317565500 hasConcept C59732488 @default.
- W4317565500 hasConcept C75684735 @default.
- W4317565500 hasConcept C79158427 @default.
- W4317565500 hasConceptScore W4317565500C120567893 @default.
- W4317565500 hasConceptScore W4317565500C124101348 @default.
- W4317565500 hasConceptScore W4317565500C136197465 @default.
- W4317565500 hasConceptScore W4317565500C148863701 @default.
- W4317565500 hasConceptScore W4317565500C154945302 @default.
- W4317565500 hasConceptScore W4317565500C161191863 @default.
- W4317565500 hasConceptScore W4317565500C172367668 @default.
- W4317565500 hasConceptScore W4317565500C193524817 @default.