Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317568159> ?p ?o ?g. }
- W4317568159 abstract "Molecules with strong two-photon absorption (TPA) are important in many advanced applications such as upconverted laser and photodynamic therapy, but their design is hampered by the high cost of experimental screening and accurate quantum chemical (QC) calculations. Here a systematic study is performed by collecting an experimental TPA database with ≈900 molecules, analyzing with interpretable machine learning (ML) the key molecular features explaining TPA magnitudes, and building a fast ML model for predictions. The ML model has prediction errors of similar magnitude compared to experimental and affordable QC methods errors and has the potential for high-throughput screening as additionally validated with the new experimental measurements. ML feature analysis is generally consistent with common beliefs which is quantified and rectified. The most important feature is conjugation length followed by features reflecting the effects of donor and acceptor substitution and coplanarity." @default.
- W4317568159 created "2023-01-21" @default.
- W4317568159 creator A5010811662 @default.
- W4317568159 creator A5018955596 @default.
- W4317568159 creator A5030953124 @default.
- W4317568159 creator A5062253464 @default.
- W4317568159 creator A5063240098 @default.
- W4317568159 creator A5063300577 @default.
- W4317568159 creator A5063814372 @default.
- W4317568159 creator A5066115843 @default.
- W4317568159 creator A5067183847 @default.
- W4317568159 creator A5069976428 @default.
- W4317568159 date "2023-01-19" @default.
- W4317568159 modified "2023-10-09" @default.
- W4317568159 title "Interpretable Machine Learning of Two‐Photon Absorption" @default.
- W4317568159 cites W1565541458 @default.
- W4317568159 cites W1815689521 @default.
- W4317568159 cites W1968730224 @default.
- W4317568159 cites W1986497325 @default.
- W4317568159 cites W1987175448 @default.
- W4317568159 cites W1991262047 @default.
- W4317568159 cites W2002843020 @default.
- W4317568159 cites W2008517160 @default.
- W4317568159 cites W2011655653 @default.
- W4317568159 cites W2020586725 @default.
- W4317568159 cites W2050044028 @default.
- W4317568159 cites W2066273100 @default.
- W4317568159 cites W2080947364 @default.
- W4317568159 cites W2088710969 @default.
- W4317568159 cites W2090467197 @default.
- W4317568159 cites W2091723156 @default.
- W4317568159 cites W2113504999 @default.
- W4317568159 cites W2132525235 @default.
- W4317568159 cites W2152609612 @default.
- W4317568159 cites W2289484339 @default.
- W4317568159 cites W2303513774 @default.
- W4317568159 cites W2328619032 @default.
- W4317568159 cites W2396843170 @default.
- W4317568159 cites W2529361831 @default.
- W4317568159 cites W2554112494 @default.
- W4317568159 cites W2594183968 @default.
- W4317568159 cites W2614245905 @default.
- W4317568159 cites W2766844717 @default.
- W4317568159 cites W2806570436 @default.
- W4317568159 cites W2883583109 @default.
- W4317568159 cites W2951646322 @default.
- W4317568159 cites W2965763049 @default.
- W4317568159 cites W2999615587 @default.
- W4317568159 cites W3005746814 @default.
- W4317568159 cites W3015306349 @default.
- W4317568159 cites W3019208434 @default.
- W4317568159 cites W3022380717 @default.
- W4317568159 cites W3023041258 @default.
- W4317568159 cites W3043202332 @default.
- W4317568159 cites W3044750868 @default.
- W4317568159 cites W3095561408 @default.
- W4317568159 cites W3101706855 @default.
- W4317568159 cites W3153857331 @default.
- W4317568159 cites W3160880127 @default.
- W4317568159 cites W3167446424 @default.
- W4317568159 cites W3216765483 @default.
- W4317568159 cites W4205331953 @default.
- W4317568159 cites W4210721649 @default.
- W4317568159 cites W4221067726 @default.
- W4317568159 cites W4317568159 @default.
- W4317568159 doi "https://doi.org/10.1002/advs.202204902" @default.
- W4317568159 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36658720" @default.
- W4317568159 hasPublicationYear "2023" @default.
- W4317568159 type Work @default.
- W4317568159 citedByCount "3" @default.
- W4317568159 countsByYear W43175681592023 @default.
- W4317568159 crossrefType "journal-article" @default.
- W4317568159 hasAuthorship W4317568159A5010811662 @default.
- W4317568159 hasAuthorship W4317568159A5018955596 @default.
- W4317568159 hasAuthorship W4317568159A5030953124 @default.
- W4317568159 hasAuthorship W4317568159A5062253464 @default.
- W4317568159 hasAuthorship W4317568159A5063240098 @default.
- W4317568159 hasAuthorship W4317568159A5063300577 @default.
- W4317568159 hasAuthorship W4317568159A5063814372 @default.
- W4317568159 hasAuthorship W4317568159A5066115843 @default.
- W4317568159 hasAuthorship W4317568159A5067183847 @default.
- W4317568159 hasAuthorship W4317568159A5069976428 @default.
- W4317568159 hasBestOaLocation W43175681591 @default.
- W4317568159 hasConcept C101075120 @default.
- W4317568159 hasConcept C120665830 @default.
- W4317568159 hasConcept C121332964 @default.
- W4317568159 hasConcept C125287762 @default.
- W4317568159 hasConcept C138885662 @default.
- W4317568159 hasConcept C154945302 @default.
- W4317568159 hasConcept C159317903 @default.
- W4317568159 hasConcept C178790620 @default.
- W4317568159 hasConcept C185592680 @default.
- W4317568159 hasConcept C186060115 @default.
- W4317568159 hasConcept C192562407 @default.
- W4317568159 hasConcept C20625954 @default.
- W4317568159 hasConcept C2524010 @default.
- W4317568159 hasConcept C2776401178 @default.
- W4317568159 hasConcept C32909587 @default.
- W4317568159 hasConcept C33923547 @default.
- W4317568159 hasConcept C41008148 @default.