Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317584387> ?p ?o ?g. }
- W4317584387 abstract "The coupling of artificial intelligence and materials characterizations has been a center piece of almost all materials discovery efforts since 1990. Furthermore, with the constant development in probabilistic machine learning tools (i.e. machine learning models that can efficiently propagate uncertainty from inputs to outputs), the synergistic interplay between materials expert knowledge and machine learning model accuracy has been a major driver for state-of-the-art materials research. However, there still exist major challenges facing the machine learning community today when it comes to materials discovery. Be it properly representing uncertainties in the data, or leveraging materials expert knowledge in the learning phase, or actively learning from the usually-sparse, and in many cases non-comprehensive, data sets available to the machine learning expert. These challenges need to be overcome to accelerate research endeavors in the domain of material discovery. To this end, General Electric Research (GER) has been developing and applying highly robust, industry-grade tools that can do tasks like uncertainty quantification (UQ), probabilistic calibration, meta-modelling, active learning, and many more. Application and demonstration of two such tools namely Bayesian Hybrid Modeling (GEBHM) and Intelligent Design and Analysis of Computer Experiments (IDACE) are presented in this paper in the context of materials modeling and discovery." @default.
- W4317584387 created "2023-01-21" @default.
- W4317584387 creator A5000237088 @default.
- W4317584387 creator A5003578217 @default.
- W4317584387 creator A5005375493 @default.
- W4317584387 creator A5025108509 @default.
- W4317584387 creator A5033043476 @default.
- W4317584387 creator A5033342296 @default.
- W4317584387 creator A5033756688 @default.
- W4317584387 creator A5033885787 @default.
- W4317584387 creator A5034885122 @default.
- W4317584387 creator A5043049310 @default.
- W4317584387 creator A5051948606 @default.
- W4317584387 creator A5052787170 @default.
- W4317584387 creator A5052928670 @default.
- W4317584387 creator A5058291763 @default.
- W4317584387 creator A5062645511 @default.
- W4317584387 creator A5065714304 @default.
- W4317584387 creator A5073036292 @default.
- W4317584387 creator A5082980319 @default.
- W4317584387 creator A5083841424 @default.
- W4317584387 creator A5087229472 @default.
- W4317584387 date "2023-01-19" @default.
- W4317584387 modified "2023-10-16" @default.
- W4317584387 title "On Uncertainty Quantification in Materials Modeling and Discovery: Applications of GE's BHM and IDACE" @default.
- W4317584387 cites W1510052597 @default.
- W4317584387 cites W1563088657 @default.
- W4317584387 cites W1657213141 @default.
- W4317584387 cites W2006808362 @default.
- W4317584387 cites W2012815280 @default.
- W4317584387 cites W2051979767 @default.
- W4317584387 cites W2093167634 @default.
- W4317584387 cites W2097968133 @default.
- W4317584387 cites W2560741230 @default.
- W4317584387 cites W2594254564 @default.
- W4317584387 cites W2742835787 @default.
- W4317584387 cites W2754162223 @default.
- W4317584387 cites W2781579237 @default.
- W4317584387 cites W2782751010 @default.
- W4317584387 cites W2792276815 @default.
- W4317584387 cites W2797136466 @default.
- W4317584387 cites W2963150046 @default.
- W4317584387 cites W2991355943 @default.
- W4317584387 cites W2992586577 @default.
- W4317584387 cites W3026048580 @default.
- W4317584387 cites W3122782715 @default.
- W4317584387 cites W3160039957 @default.
- W4317584387 cites W3194281926 @default.
- W4317584387 cites W3205037874 @default.
- W4317584387 cites W3213866062 @default.
- W4317584387 cites W4206559156 @default.
- W4317584387 cites W4214754799 @default.
- W4317584387 cites W4220762539 @default.
- W4317584387 cites W4280512575 @default.
- W4317584387 cites W4280625105 @default.
- W4317584387 cites W4293150379 @default.
- W4317584387 cites W4296552503 @default.
- W4317584387 doi "https://doi.org/10.2514/6.2023-0528" @default.
- W4317584387 hasPublicationYear "2023" @default.
- W4317584387 type Work @default.
- W4317584387 citedByCount "0" @default.
- W4317584387 crossrefType "proceedings-article" @default.
- W4317584387 hasAuthorship W4317584387A5000237088 @default.
- W4317584387 hasAuthorship W4317584387A5003578217 @default.
- W4317584387 hasAuthorship W4317584387A5005375493 @default.
- W4317584387 hasAuthorship W4317584387A5025108509 @default.
- W4317584387 hasAuthorship W4317584387A5033043476 @default.
- W4317584387 hasAuthorship W4317584387A5033342296 @default.
- W4317584387 hasAuthorship W4317584387A5033756688 @default.
- W4317584387 hasAuthorship W4317584387A5033885787 @default.
- W4317584387 hasAuthorship W4317584387A5034885122 @default.
- W4317584387 hasAuthorship W4317584387A5043049310 @default.
- W4317584387 hasAuthorship W4317584387A5051948606 @default.
- W4317584387 hasAuthorship W4317584387A5052787170 @default.
- W4317584387 hasAuthorship W4317584387A5052928670 @default.
- W4317584387 hasAuthorship W4317584387A5058291763 @default.
- W4317584387 hasAuthorship W4317584387A5062645511 @default.
- W4317584387 hasAuthorship W4317584387A5065714304 @default.
- W4317584387 hasAuthorship W4317584387A5073036292 @default.
- W4317584387 hasAuthorship W4317584387A5082980319 @default.
- W4317584387 hasAuthorship W4317584387A5083841424 @default.
- W4317584387 hasAuthorship W4317584387A5087229472 @default.
- W4317584387 hasConcept C119857082 @default.
- W4317584387 hasConcept C120567893 @default.
- W4317584387 hasConcept C134306372 @default.
- W4317584387 hasConcept C151730666 @default.
- W4317584387 hasConcept C154945302 @default.
- W4317584387 hasConcept C2779343474 @default.
- W4317584387 hasConcept C33724603 @default.
- W4317584387 hasConcept C33923547 @default.
- W4317584387 hasConcept C36503486 @default.
- W4317584387 hasConcept C41008148 @default.
- W4317584387 hasConcept C49937458 @default.
- W4317584387 hasConcept C86803240 @default.
- W4317584387 hasConceptScore W4317584387C119857082 @default.
- W4317584387 hasConceptScore W4317584387C120567893 @default.
- W4317584387 hasConceptScore W4317584387C134306372 @default.
- W4317584387 hasConceptScore W4317584387C151730666 @default.
- W4317584387 hasConceptScore W4317584387C154945302 @default.
- W4317584387 hasConceptScore W4317584387C2779343474 @default.