Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317603940> ?p ?o ?g. }
- W4317603940 endingPage "12" @default.
- W4317603940 startingPage "1" @default.
- W4317603940 abstract "Due to the global outbreak of COVID-19 and its variants, antiviral peptides with anti-coronavirus activity (ACVPs) represent a promising new drug candidate for the treatment of coronavirus infection. At present, several computational tools have been developed to identify ACVPs, but the overall prediction performance is still not enough to meet the actual therapeutic application. In this study, we constructed an efficient and reliable prediction model PACVP (Prediction of Anti-CoronaVirus Peptides) for identifying ACVPs based on effective feature representation and a two-layer stacking learning framework. In the first layer, we use nine feature encoding methods with different feature representation angles to characterize the rich sequence information and fuse them into a feature matrix. Secondly, data normalization and unbalanced data processing are carried out. Next, 12 baseline models are constructed by combining three feature selection methods and four machine learning classification algorithms. In the second layer, we input the optimal probability features into the logistic regression algorithm (LR) to train the final model PACVP. The experiments show that PACVP achieves favorable prediction performance on independent test dataset, with ACC of 0.9208 and AUC of 0.9465. We hope that PACVP will become a useful method for identifying, annotating and characterizing novel ACVPs." @default.
- W4317603940 created "2023-01-21" @default.
- W4317603940 creator A5004787761 @default.
- W4317603940 creator A5009417068 @default.
- W4317603940 creator A5064185915 @default.
- W4317603940 creator A5074349822 @default.
- W4317603940 creator A5078955823 @default.
- W4317603940 date "2023-01-01" @default.
- W4317603940 modified "2023-10-10" @default.
- W4317603940 title "PACVP: Prediction of Anti-Coronavirus Peptides Using A Stacking Learning Strategy with Effective Feature Representation" @default.
- W4317603940 cites W1967586709 @default.
- W4317603940 cites W1973012451 @default.
- W4317603940 cites W1981976602 @default.
- W4317603940 cites W1992450378 @default.
- W4317603940 cites W1993220166 @default.
- W4317603940 cites W1993374993 @default.
- W4317603940 cites W1993711987 @default.
- W4317603940 cites W2027731040 @default.
- W4317603940 cites W2074888575 @default.
- W4317603940 cites W2095423661 @default.
- W4317603940 cites W2097834518 @default.
- W4317603940 cites W2107686700 @default.
- W4317603940 cites W2133462743 @default.
- W4317603940 cites W2133797106 @default.
- W4317603940 cites W2145957695 @default.
- W4317603940 cites W2148143831 @default.
- W4317603940 cites W2169880106 @default.
- W4317603940 cites W2170747616 @default.
- W4317603940 cites W2417390039 @default.
- W4317603940 cites W2766725728 @default.
- W4317603940 cites W2793168264 @default.
- W4317603940 cites W2806146459 @default.
- W4317603940 cites W2891290193 @default.
- W4317603940 cites W2905629607 @default.
- W4317603940 cites W2914645084 @default.
- W4317603940 cites W2936599975 @default.
- W4317603940 cites W2937145808 @default.
- W4317603940 cites W2942801317 @default.
- W4317603940 cites W2943935116 @default.
- W4317603940 cites W2944959957 @default.
- W4317603940 cites W2952615074 @default.
- W4317603940 cites W2981572887 @default.
- W4317603940 cites W2987660980 @default.
- W4317603940 cites W2987724682 @default.
- W4317603940 cites W2990458240 @default.
- W4317603940 cites W2999580270 @default.
- W4317603940 cites W3013976849 @default.
- W4317603940 cites W3018950940 @default.
- W4317603940 cites W3047310964 @default.
- W4317603940 cites W3119003488 @default.
- W4317603940 cites W3122585911 @default.
- W4317603940 cites W3134163647 @default.
- W4317603940 cites W3134945627 @default.
- W4317603940 cites W3135871359 @default.
- W4317603940 cites W3137676098 @default.
- W4317603940 cites W3160988990 @default.
- W4317603940 cites W3185433118 @default.
- W4317603940 cites W3186424845 @default.
- W4317603940 cites W3195657207 @default.
- W4317603940 cites W3210428276 @default.
- W4317603940 doi "https://doi.org/10.1109/tcbb.2023.3238370" @default.
- W4317603940 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37022025" @default.
- W4317603940 hasPublicationYear "2023" @default.
- W4317603940 type Work @default.
- W4317603940 citedByCount "1" @default.
- W4317603940 countsByYear W43176039402023 @default.
- W4317603940 crossrefType "journal-article" @default.
- W4317603940 hasAuthorship W4317603940A5004787761 @default.
- W4317603940 hasAuthorship W4317603940A5009417068 @default.
- W4317603940 hasAuthorship W4317603940A5064185915 @default.
- W4317603940 hasAuthorship W4317603940A5074349822 @default.
- W4317603940 hasAuthorship W4317603940A5078955823 @default.
- W4317603940 hasConcept C119857082 @default.
- W4317603940 hasConcept C124101348 @default.
- W4317603940 hasConcept C136886441 @default.
- W4317603940 hasConcept C138885662 @default.
- W4317603940 hasConcept C142724271 @default.
- W4317603940 hasConcept C144024400 @default.
- W4317603940 hasConcept C148483581 @default.
- W4317603940 hasConcept C153180895 @default.
- W4317603940 hasConcept C154945302 @default.
- W4317603940 hasConcept C17744445 @default.
- W4317603940 hasConcept C19165224 @default.
- W4317603940 hasConcept C199539241 @default.
- W4317603940 hasConcept C2776359362 @default.
- W4317603940 hasConcept C2776401178 @default.
- W4317603940 hasConcept C2777648638 @default.
- W4317603940 hasConcept C2779134260 @default.
- W4317603940 hasConcept C3008058167 @default.
- W4317603940 hasConcept C41008148 @default.
- W4317603940 hasConcept C41895202 @default.
- W4317603940 hasConcept C524204448 @default.
- W4317603940 hasConcept C59404180 @default.
- W4317603940 hasConcept C71924100 @default.
- W4317603940 hasConcept C94625758 @default.
- W4317603940 hasConceptScore W4317603940C119857082 @default.
- W4317603940 hasConceptScore W4317603940C124101348 @default.
- W4317603940 hasConceptScore W4317603940C136886441 @default.