Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317609705> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4317609705 endingPage "269" @default.
- W4317609705 startingPage "269" @default.
- W4317609705 abstract "Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in order to analyze a dataset, users should be able to test different techniques and choose the most appropriate one. This step can be particularly difficult and time consuming, since most methods' implementations are made available independently, possibly in different programming languages. The implementation of an open-source library containing different inference methods within a common framework is expected to be a valuable toolkit for the systems biology community. Results: In this work, we introduce GReNaDIne (Gene Regulatory Network Data-driven Inference), a Python package that implements 18 machine learning data-driven gene regulatory network inference methods. It also includes eight generalist preprocessing techniques, suitable for both RNA-seq and microarray dataset analysis, as well as four normalization techniques dedicated to RNA-seq. In addition, this package implements the possibility to combine the results of different inference tools to form robust and efficient ensembles. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. The open-source GReNaDIne Python package is made freely available in a dedicated GitLab repository, as well as in the official third-party software repository PyPI Python Package Index. The latest documentation on the GReNaDIne library is also available at Read the Docs, an open-source software documentation hosting platform. Contribution: The GReNaDIne tool represents a technological contribution to the field of systems biology. This package can be used to infer gene regulatory networks from high-throughput gene expression data using different algorithms within the same framework. In order to analyze their datasets, users can apply a battery of preprocessing and postprocessing tools and choose the most adapted inference method from the GReNaDIne library and even combine the output of different methods to obtain more robust results. The results format provided by GReNaDIne is compatible with well-known complementary refinement tools such as PYSCENIC." @default.
- W4317609705 created "2023-01-21" @default.
- W4317609705 creator A5002927216 @default.
- W4317609705 creator A5004778467 @default.
- W4317609705 creator A5045878836 @default.
- W4317609705 creator A5051838896 @default.
- W4317609705 creator A5054891814 @default.
- W4317609705 creator A5090857844 @default.
- W4317609705 date "2023-01-20" @default.
- W4317609705 modified "2023-10-18" @default.
- W4317609705 title "GReNaDIne: A Data-Driven Python Library to Infer Gene Regulatory Networks from Gene Expression Data" @default.
- W4317609705 cites W1963672974 @default.
- W4317609705 cites W1976526581 @default.
- W4317609705 cites W2044525257 @default.
- W4317609705 cites W2060705109 @default.
- W4317609705 cites W2070493638 @default.
- W4317609705 cites W2076513103 @default.
- W4317609705 cites W2106555403 @default.
- W4317609705 cites W2109384743 @default.
- W4317609705 cites W2112009981 @default.
- W4317609705 cites W2148944713 @default.
- W4317609705 cites W2158698691 @default.
- W4317609705 cites W2179438025 @default.
- W4317609705 cites W2352494753 @default.
- W4317609705 cites W2616922646 @default.
- W4317609705 cites W2787894218 @default.
- W4317609705 cites W2791611289 @default.
- W4317609705 cites W2913354234 @default.
- W4317609705 cites W2990122727 @default.
- W4317609705 cites W3015333044 @default.
- W4317609705 cites W3024161231 @default.
- W4317609705 cites W3042308410 @default.
- W4317609705 cites W3103145119 @default.
- W4317609705 cites W3105193757 @default.
- W4317609705 cites W4200067116 @default.
- W4317609705 doi "https://doi.org/10.3390/genes14020269" @default.
- W4317609705 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36833196" @default.
- W4317609705 hasPublicationYear "2023" @default.
- W4317609705 type Work @default.
- W4317609705 citedByCount "3" @default.
- W4317609705 countsByYear W43176097052023 @default.
- W4317609705 crossrefType "journal-article" @default.
- W4317609705 hasAuthorship W4317609705A5002927216 @default.
- W4317609705 hasAuthorship W4317609705A5004778467 @default.
- W4317609705 hasAuthorship W4317609705A5045878836 @default.
- W4317609705 hasAuthorship W4317609705A5051838896 @default.
- W4317609705 hasAuthorship W4317609705A5054891814 @default.
- W4317609705 hasAuthorship W4317609705A5090857844 @default.
- W4317609705 hasBestOaLocation W43176097051 @default.
- W4317609705 hasConcept C104317684 @default.
- W4317609705 hasConcept C124101348 @default.
- W4317609705 hasConcept C150194340 @default.
- W4317609705 hasConcept C154945302 @default.
- W4317609705 hasConcept C199360897 @default.
- W4317609705 hasConcept C2776214188 @default.
- W4317609705 hasConcept C2777904410 @default.
- W4317609705 hasConcept C34736171 @default.
- W4317609705 hasConcept C41008148 @default.
- W4317609705 hasConcept C519991488 @default.
- W4317609705 hasConcept C55493867 @default.
- W4317609705 hasConcept C56666940 @default.
- W4317609705 hasConcept C67339327 @default.
- W4317609705 hasConcept C86803240 @default.
- W4317609705 hasConceptScore W4317609705C104317684 @default.
- W4317609705 hasConceptScore W4317609705C124101348 @default.
- W4317609705 hasConceptScore W4317609705C150194340 @default.
- W4317609705 hasConceptScore W4317609705C154945302 @default.
- W4317609705 hasConceptScore W4317609705C199360897 @default.
- W4317609705 hasConceptScore W4317609705C2776214188 @default.
- W4317609705 hasConceptScore W4317609705C2777904410 @default.
- W4317609705 hasConceptScore W4317609705C34736171 @default.
- W4317609705 hasConceptScore W4317609705C41008148 @default.
- W4317609705 hasConceptScore W4317609705C519991488 @default.
- W4317609705 hasConceptScore W4317609705C55493867 @default.
- W4317609705 hasConceptScore W4317609705C56666940 @default.
- W4317609705 hasConceptScore W4317609705C67339327 @default.
- W4317609705 hasConceptScore W4317609705C86803240 @default.
- W4317609705 hasIssue "2" @default.
- W4317609705 hasLocation W43176097051 @default.
- W4317609705 hasLocation W43176097052 @default.
- W4317609705 hasLocation W43176097053 @default.
- W4317609705 hasOpenAccess W4317609705 @default.
- W4317609705 hasPrimaryLocation W43176097051 @default.
- W4317609705 hasRelatedWork W179869519 @default.
- W4317609705 hasRelatedWork W1906486629 @default.
- W4317609705 hasRelatedWork W2018297885 @default.
- W4317609705 hasRelatedWork W2166247150 @default.
- W4317609705 hasRelatedWork W2391200010 @default.
- W4317609705 hasRelatedWork W3021560500 @default.
- W4317609705 hasRelatedWork W4243252198 @default.
- W4317609705 hasRelatedWork W4312626352 @default.
- W4317609705 hasRelatedWork W4318619745 @default.
- W4317609705 hasRelatedWork W656686947 @default.
- W4317609705 hasVolume "14" @default.
- W4317609705 isParatext "false" @default.
- W4317609705 isRetracted "false" @default.
- W4317609705 workType "article" @default.