Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317616072> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4317616072 endingPage "107" @default.
- W4317616072 startingPage "107" @default.
- W4317616072 abstract "For a fractionally integrated Brownian motion (FIBM) of order α∈(0,1],Xα(t), we investigate the decaying rate of P(τSα>t) as t→+∞, where τSα=inf{t>0:Xα(t)≥S} is the first-passage time (FPT) of Xα(t) through the barrier S>0. Precisely, we study the so-called persistent exponent θ=θ(α) of the FPT tail, such that P(τSα>t)=t−θ+o(1), as t→+∞, and by means of numerical simulation of long enough trajectories of the process Xα(t), we are able to estimate θ(α) and to show that it is a non-increasing function of α∈(0,1], with 1/4≤θ(α)≤1/2. In particular, we are able to validate numerically a new conjecture about the analytical expression of the function θ=θ(α), for α∈(0,1]. Such a numerical validation is carried out in two ways: in the first one, we estimate θ(α), by using the simulated FPT density, obtained for any α∈(0,1]; in the second one, we estimate the persistent exponent by directly calculating Pmax0≤s≤tXα(s)<1. Both ways confirm our conclusions within the limit of numerical approximation. Finally, we investigate the self-similarity property of Xα(t) and we find the upper bound of its covariance function." @default.
- W4317616072 created "2023-01-21" @default.
- W4317616072 creator A5059567126 @default.
- W4317616072 creator A5078293564 @default.
- W4317616072 date "2023-01-20" @default.
- W4317616072 modified "2023-10-09" @default.
- W4317616072 title "On the Estimation of the Persistence Exponent for a Fractionally Integrated Brownian Motion by Numerical Simulations" @default.
- W4317616072 cites W1993598763 @default.
- W4317616072 cites W2036777855 @default.
- W4317616072 cites W2050098623 @default.
- W4317616072 cites W2078594314 @default.
- W4317616072 cites W2106007551 @default.
- W4317616072 cites W2143623312 @default.
- W4317616072 cites W2149846146 @default.
- W4317616072 cites W2944712254 @default.
- W4317616072 cites W2948921897 @default.
- W4317616072 cites W3045882220 @default.
- W4317616072 cites W3158914254 @default.
- W4317616072 cites W3196346722 @default.
- W4317616072 cites W4229020593 @default.
- W4317616072 cites W4229928878 @default.
- W4317616072 doi "https://doi.org/10.3390/fractalfract7020107" @default.
- W4317616072 hasPublicationYear "2023" @default.
- W4317616072 type Work @default.
- W4317616072 citedByCount "0" @default.
- W4317616072 crossrefType "journal-article" @default.
- W4317616072 hasAuthorship W4317616072A5059567126 @default.
- W4317616072 hasAuthorship W4317616072A5078293564 @default.
- W4317616072 hasBestOaLocation W43176160721 @default.
- W4317616072 hasConcept C10138342 @default.
- W4317616072 hasConcept C105795698 @default.
- W4317616072 hasConcept C112401455 @default.
- W4317616072 hasConcept C114614502 @default.
- W4317616072 hasConcept C121332964 @default.
- W4317616072 hasConcept C121864883 @default.
- W4317616072 hasConcept C134306372 @default.
- W4317616072 hasConcept C138885662 @default.
- W4317616072 hasConcept C14036430 @default.
- W4317616072 hasConcept C151201525 @default.
- W4317616072 hasConcept C162324750 @default.
- W4317616072 hasConcept C178650346 @default.
- W4317616072 hasConcept C182306322 @default.
- W4317616072 hasConcept C2780388253 @default.
- W4317616072 hasConcept C2780990831 @default.
- W4317616072 hasConcept C33923547 @default.
- W4317616072 hasConcept C37914503 @default.
- W4317616072 hasConcept C41895202 @default.
- W4317616072 hasConcept C77553402 @default.
- W4317616072 hasConcept C78458016 @default.
- W4317616072 hasConcept C86803240 @default.
- W4317616072 hasConceptScore W4317616072C10138342 @default.
- W4317616072 hasConceptScore W4317616072C105795698 @default.
- W4317616072 hasConceptScore W4317616072C112401455 @default.
- W4317616072 hasConceptScore W4317616072C114614502 @default.
- W4317616072 hasConceptScore W4317616072C121332964 @default.
- W4317616072 hasConceptScore W4317616072C121864883 @default.
- W4317616072 hasConceptScore W4317616072C134306372 @default.
- W4317616072 hasConceptScore W4317616072C138885662 @default.
- W4317616072 hasConceptScore W4317616072C14036430 @default.
- W4317616072 hasConceptScore W4317616072C151201525 @default.
- W4317616072 hasConceptScore W4317616072C162324750 @default.
- W4317616072 hasConceptScore W4317616072C178650346 @default.
- W4317616072 hasConceptScore W4317616072C182306322 @default.
- W4317616072 hasConceptScore W4317616072C2780388253 @default.
- W4317616072 hasConceptScore W4317616072C2780990831 @default.
- W4317616072 hasConceptScore W4317616072C33923547 @default.
- W4317616072 hasConceptScore W4317616072C37914503 @default.
- W4317616072 hasConceptScore W4317616072C41895202 @default.
- W4317616072 hasConceptScore W4317616072C77553402 @default.
- W4317616072 hasConceptScore W4317616072C78458016 @default.
- W4317616072 hasConceptScore W4317616072C86803240 @default.
- W4317616072 hasFunder F4320321873 @default.
- W4317616072 hasIssue "2" @default.
- W4317616072 hasLocation W43176160721 @default.
- W4317616072 hasLocation W43176160722 @default.
- W4317616072 hasOpenAccess W4317616072 @default.
- W4317616072 hasPrimaryLocation W43176160721 @default.
- W4317616072 hasRelatedWork W1979999789 @default.
- W4317616072 hasRelatedWork W2055303320 @default.
- W4317616072 hasRelatedWork W2066892511 @default.
- W4317616072 hasRelatedWork W2141385105 @default.
- W4317616072 hasRelatedWork W2559912312 @default.
- W4317616072 hasRelatedWork W2951836932 @default.
- W4317616072 hasRelatedWork W4283074589 @default.
- W4317616072 hasRelatedWork W4299331208 @default.
- W4317616072 hasRelatedWork W4302013424 @default.
- W4317616072 hasRelatedWork W1966746207 @default.
- W4317616072 hasVolume "7" @default.
- W4317616072 isParatext "false" @default.
- W4317616072 isRetracted "false" @default.
- W4317616072 workType "article" @default.