Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317623453> ?p ?o ?g. }
- W4317623453 endingPage "112807" @default.
- W4317623453 startingPage "112807" @default.
- W4317623453 abstract "Very little work has been done on the feasibility of Machine Learning (ML) for predicting buildings energy demand right at the design stage. This feasibility, if proven, would help to avoid the construction of inefficient buildings. This paper uses dataset from 7559 buildings, and estimates their energy consumption using nine ML models. Results show that deep neural network (DNN) is the most efficient ML model with MAE, MSD and RMSE of 0.93, 1.12 and 1.06 respectively achieved in less than 7 s despite the huge data size. Its r2 is also the highest (0.96) which means that the DNN approach manages to explain 96% of the energy consumption in buildings and only 4% remains unexplained certainly due to the limitation of independent variables. Also, this result is not affected by building clusters nor by data from a particular climate zone. As an innovation, this study proposes a model that professionals could use in the design phase of a construction project. This model will allow them to take into account all crucial aspects of the design of an energy efficient building. The model will then serve as a decision-making tool to control and optimise the project and to anticipate energy consumption even before the building is constructed." @default.
- W4317623453 created "2023-01-21" @default.
- W4317623453 creator A5040197380 @default.
- W4317623453 creator A5049597660 @default.
- W4317623453 creator A5091101054 @default.
- W4317623453 creator A5091353333 @default.
- W4317623453 date "2023-03-01" @default.
- W4317623453 modified "2023-10-13" @default.
- W4317623453 title "Modeling energy-efficient building loads using machine-learning algorithms for the design phase" @default.
- W4317623453 cites W1023118562 @default.
- W4317623453 cites W1144579682 @default.
- W4317623453 cites W1534477342 @default.
- W4317623453 cites W1606824532 @default.
- W4317623453 cites W1967379861 @default.
- W4317623453 cites W1988434901 @default.
- W4317623453 cites W1998230236 @default.
- W4317623453 cites W1999989204 @default.
- W4317623453 cites W2000548672 @default.
- W4317623453 cites W2005683380 @default.
- W4317623453 cites W2015916203 @default.
- W4317623453 cites W2018858447 @default.
- W4317623453 cites W2032927332 @default.
- W4317623453 cites W2036648150 @default.
- W4317623453 cites W2044242125 @default.
- W4317623453 cites W2051607409 @default.
- W4317623453 cites W2063678689 @default.
- W4317623453 cites W2064173787 @default.
- W4317623453 cites W2075796650 @default.
- W4317623453 cites W2083065157 @default.
- W4317623453 cites W2088478783 @default.
- W4317623453 cites W2111528621 @default.
- W4317623453 cites W2126652700 @default.
- W4317623453 cites W2156302255 @default.
- W4317623453 cites W2161336914 @default.
- W4317623453 cites W2163328552 @default.
- W4317623453 cites W2164709595 @default.
- W4317623453 cites W2170242066 @default.
- W4317623453 cites W2251214836 @default.
- W4317623453 cites W2402038119 @default.
- W4317623453 cites W2567511014 @default.
- W4317623453 cites W2595984151 @default.
- W4317623453 cites W2605614336 @default.
- W4317623453 cites W2761146210 @default.
- W4317623453 cites W2761875693 @default.
- W4317623453 cites W2763500568 @default.
- W4317623453 cites W2791414687 @default.
- W4317623453 cites W2797373921 @default.
- W4317623453 cites W2802491896 @default.
- W4317623453 cites W2884235811 @default.
- W4317623453 cites W2897784558 @default.
- W4317623453 cites W2912935264 @default.
- W4317623453 cites W2937246084 @default.
- W4317623453 cites W2947136732 @default.
- W4317623453 cites W2953627834 @default.
- W4317623453 cites W2955757204 @default.
- W4317623453 cites W2966111888 @default.
- W4317623453 cites W2969326186 @default.
- W4317623453 cites W2982493538 @default.
- W4317623453 cites W2992523873 @default.
- W4317623453 cites W2994947794 @default.
- W4317623453 cites W2999323915 @default.
- W4317623453 cites W3003484286 @default.
- W4317623453 cites W3004454690 @default.
- W4317623453 cites W3011097710 @default.
- W4317623453 cites W3011699874 @default.
- W4317623453 cites W3012113472 @default.
- W4317623453 cites W3012214319 @default.
- W4317623453 cites W3036110098 @default.
- W4317623453 cites W3040732036 @default.
- W4317623453 cites W3082122398 @default.
- W4317623453 cites W3090512112 @default.
- W4317623453 cites W3091534692 @default.
- W4317623453 cites W3093707352 @default.
- W4317623453 cites W3112965332 @default.
- W4317623453 cites W3116890009 @default.
- W4317623453 cites W3124819130 @default.
- W4317623453 cites W3133941285 @default.
- W4317623453 cites W3135039877 @default.
- W4317623453 cites W3136263106 @default.
- W4317623453 cites W3149578452 @default.
- W4317623453 cites W3157428557 @default.
- W4317623453 cites W3171114845 @default.
- W4317623453 cites W3173616220 @default.
- W4317623453 cites W3186442101 @default.
- W4317623453 cites W3196692669 @default.
- W4317623453 cites W3202840159 @default.
- W4317623453 cites W3207924781 @default.
- W4317623453 cites W3217470798 @default.
- W4317623453 cites W4200080758 @default.
- W4317623453 cites W4200586024 @default.
- W4317623453 cites W4205944358 @default.
- W4317623453 cites W4206050975 @default.
- W4317623453 cites W4206060479 @default.
- W4317623453 cites W4213175174 @default.
- W4317623453 cites W4220762983 @default.
- W4317623453 cites W4220974186 @default.
- W4317623453 cites W4220996534 @default.
- W4317623453 cites W4225724460 @default.