Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317637384> ?p ?o ?g. }
- W4317637384 endingPage "9836" @default.
- W4317637384 startingPage "9819" @default.
- W4317637384 abstract "Abstract In this work, we assess the performance and energy efficiency of high-performance codes for the convolution operator, based on the direct, explicit/implicit lowering and Winograd algorithms used for deep learning (DL) inference on a series of ARM-based processor architectures. Specifically, we evaluate the NVIDIA Denver2 and Carmel processors, as well as the ARM Cortex-A57 and Cortex-A78AE CPUs as part of a recent set of NVIDIA Jetson platforms. The performance–energy evaluation is carried out using the ResNet-50 v1.5 convolutional neural network (CNN) on varying configurations of convolution algorithms, number of threads/cores, and operating frequencies on the tested processor cores. The results demonstrate that the best throughput is obtained on all platforms with the Winograd convolution operator running on all the cores at their highest frequency. However, if the goal is to reduce the energy footprint, there is no rule of thumb for the optimal configuration." @default.
- W4317637384 created "2023-01-21" @default.
- W4317637384 creator A5001637665 @default.
- W4317637384 creator A5011852899 @default.
- W4317637384 creator A5018719028 @default.
- W4317637384 creator A5033947083 @default.
- W4317637384 creator A5039819696 @default.
- W4317637384 creator A5054862021 @default.
- W4317637384 creator A5090675958 @default.
- W4317637384 date "2023-01-21" @default.
- W4317637384 modified "2023-10-15" @default.
- W4317637384 title "Performance–energy trade-offs of deep learning convolution algorithms on ARM processors" @default.
- W4317637384 cites W1487564550 @default.
- W4317637384 cites W2172654076 @default.
- W4317637384 cites W2252007067 @default.
- W4317637384 cites W2531348778 @default.
- W4317637384 cites W2546536770 @default.
- W4317637384 cites W2604319603 @default.
- W4317637384 cites W2892341857 @default.
- W4317637384 cites W2950649068 @default.
- W4317637384 cites W2951894856 @default.
- W4317637384 cites W3057502114 @default.
- W4317637384 cites W3093772369 @default.
- W4317637384 cites W3129254793 @default.
- W4317637384 cites W3135841641 @default.
- W4317637384 cites W3174716098 @default.
- W4317637384 cites W4220974972 @default.
- W4317637384 cites W4224287974 @default.
- W4317637384 cites W4236853429 @default.
- W4317637384 cites W3098382995 @default.
- W4317637384 doi "https://doi.org/10.1007/s11227-023-05050-4" @default.
- W4317637384 hasPublicationYear "2023" @default.
- W4317637384 type Work @default.
- W4317637384 citedByCount "1" @default.
- W4317637384 countsByYear W43176373842023 @default.
- W4317637384 crossrefType "journal-article" @default.
- W4317637384 hasAuthorship W4317637384A5001637665 @default.
- W4317637384 hasAuthorship W4317637384A5011852899 @default.
- W4317637384 hasAuthorship W4317637384A5018719028 @default.
- W4317637384 hasAuthorship W4317637384A5033947083 @default.
- W4317637384 hasAuthorship W4317637384A5039819696 @default.
- W4317637384 hasAuthorship W4317637384A5054862021 @default.
- W4317637384 hasAuthorship W4317637384A5090675958 @default.
- W4317637384 hasBestOaLocation W43176373841 @default.
- W4317637384 hasConcept C104317684 @default.
- W4317637384 hasConcept C105795698 @default.
- W4317637384 hasConcept C111919701 @default.
- W4317637384 hasConcept C113775141 @default.
- W4317637384 hasConcept C11413529 @default.
- W4317637384 hasConcept C119599485 @default.
- W4317637384 hasConcept C127413603 @default.
- W4317637384 hasConcept C154945302 @default.
- W4317637384 hasConcept C157764524 @default.
- W4317637384 hasConcept C158448853 @default.
- W4317637384 hasConcept C17020691 @default.
- W4317637384 hasConcept C173608175 @default.
- W4317637384 hasConcept C177264268 @default.
- W4317637384 hasConcept C185592680 @default.
- W4317637384 hasConcept C186370098 @default.
- W4317637384 hasConcept C199360897 @default.
- W4317637384 hasConcept C26771161 @default.
- W4317637384 hasConcept C2742236 @default.
- W4317637384 hasConcept C2776214188 @default.
- W4317637384 hasConcept C33923547 @default.
- W4317637384 hasConcept C41008148 @default.
- W4317637384 hasConcept C45347329 @default.
- W4317637384 hasConcept C50644808 @default.
- W4317637384 hasConcept C55493867 @default.
- W4317637384 hasConcept C555944384 @default.
- W4317637384 hasConcept C74912251 @default.
- W4317637384 hasConcept C81363708 @default.
- W4317637384 hasConcept C86339819 @default.
- W4317637384 hasConcept C9390403 @default.
- W4317637384 hasConceptScore W4317637384C104317684 @default.
- W4317637384 hasConceptScore W4317637384C105795698 @default.
- W4317637384 hasConceptScore W4317637384C111919701 @default.
- W4317637384 hasConceptScore W4317637384C113775141 @default.
- W4317637384 hasConceptScore W4317637384C11413529 @default.
- W4317637384 hasConceptScore W4317637384C119599485 @default.
- W4317637384 hasConceptScore W4317637384C127413603 @default.
- W4317637384 hasConceptScore W4317637384C154945302 @default.
- W4317637384 hasConceptScore W4317637384C157764524 @default.
- W4317637384 hasConceptScore W4317637384C158448853 @default.
- W4317637384 hasConceptScore W4317637384C17020691 @default.
- W4317637384 hasConceptScore W4317637384C173608175 @default.
- W4317637384 hasConceptScore W4317637384C177264268 @default.
- W4317637384 hasConceptScore W4317637384C185592680 @default.
- W4317637384 hasConceptScore W4317637384C186370098 @default.
- W4317637384 hasConceptScore W4317637384C199360897 @default.
- W4317637384 hasConceptScore W4317637384C26771161 @default.
- W4317637384 hasConceptScore W4317637384C2742236 @default.
- W4317637384 hasConceptScore W4317637384C2776214188 @default.
- W4317637384 hasConceptScore W4317637384C33923547 @default.
- W4317637384 hasConceptScore W4317637384C41008148 @default.
- W4317637384 hasConceptScore W4317637384C45347329 @default.
- W4317637384 hasConceptScore W4317637384C50644808 @default.
- W4317637384 hasConceptScore W4317637384C55493867 @default.
- W4317637384 hasConceptScore W4317637384C555944384 @default.