Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317642783> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4317642783 abstract "Machine commonsense reasoning (MCR) systems can significantly improve the way we interact with machines. MCR systems are therefore an important element in any human-centric applications. Recent advances in machine learning (ML) have enabled breakthroughs in MCR technologies. This paper aims to improve healthcare outcomes by making human-machine interactions more intuitive than before. It presents learning models developed for MCR. Specifically, it presents a critical analysis of state-of-the-art deep learning (DL) models for MCR. These include recurrent neural network (RNN), transfer learning (TL), and transformers. Transformers, in particular, have been found to be effective for a range of natural language processing (NLP) applications, including MCR. Based on the analysis, another contribution of this paper is to assemble useful MCR tools into an adaptable MCR toolbox. To ensure broad applicability, the toolbox can be customizable for different MCR applications. Our research focuses on two specific MCR applications: commonsense validation and commonsense explanation. The former concerns identifying statements that do not make commonsense. The latter aims at explaining the reason why a given statement does not make commonsense. The paper presents some preliminary results of applying elements of the assembled toolbox to the two MCR applications. These results indicate that it is possible to achieve near human performances using finely-tuned state-of-the-art DL methods for the two MCR applications." @default.
- W4317642783 created "2023-01-21" @default.
- W4317642783 creator A5002599549 @default.
- W4317642783 creator A5002861512 @default.
- W4317642783 creator A5005401414 @default.
- W4317642783 creator A5028134056 @default.
- W4317642783 date "2022-11-07" @default.
- W4317642783 modified "2023-10-16" @default.
- W4317642783 title "Improving Healthcare Outcomes with Learning Models for Machine Commonsense Reasoning Systems" @default.
- W4317642783 cites W1969559350 @default.
- W4317642783 cites W2001771035 @default.
- W4317642783 cites W2007218237 @default.
- W4317642783 cites W2037341072 @default.
- W4317642783 cites W2064675550 @default.
- W4317642783 cites W2165698076 @default.
- W4317642783 cites W2250539671 @default.
- W4317642783 cites W2746236423 @default.
- W4317642783 cites W2912231389 @default.
- W4317642783 cites W2947337775 @default.
- W4317642783 cites W3015633916 @default.
- W4317642783 cites W3086963535 @default.
- W4317642783 cites W3101904655 @default.
- W4317642783 cites W3113425182 @default.
- W4317642783 cites W3126680753 @default.
- W4317642783 cites W3128376221 @default.
- W4317642783 cites W3196420731 @default.
- W4317642783 cites W3197638206 @default.
- W4317642783 cites W3198259762 @default.
- W4317642783 cites W3202368577 @default.
- W4317642783 doi "https://doi.org/10.1109/rasse54974.2022.10019733" @default.
- W4317642783 hasPublicationYear "2022" @default.
- W4317642783 type Work @default.
- W4317642783 citedByCount "0" @default.
- W4317642783 crossrefType "proceedings-article" @default.
- W4317642783 hasAuthorship W4317642783A5002599549 @default.
- W4317642783 hasAuthorship W4317642783A5002861512 @default.
- W4317642783 hasAuthorship W4317642783A5005401414 @default.
- W4317642783 hasAuthorship W4317642783A5028134056 @default.
- W4317642783 hasConcept C108583219 @default.
- W4317642783 hasConcept C115903868 @default.
- W4317642783 hasConcept C119599485 @default.
- W4317642783 hasConcept C119857082 @default.
- W4317642783 hasConcept C127413603 @default.
- W4317642783 hasConcept C154945302 @default.
- W4317642783 hasConcept C165801399 @default.
- W4317642783 hasConcept C193221554 @default.
- W4317642783 hasConcept C199360897 @default.
- W4317642783 hasConcept C2777655017 @default.
- W4317642783 hasConcept C30542707 @default.
- W4317642783 hasConcept C41008148 @default.
- W4317642783 hasConcept C4554734 @default.
- W4317642783 hasConcept C66322947 @default.
- W4317642783 hasConceptScore W4317642783C108583219 @default.
- W4317642783 hasConceptScore W4317642783C115903868 @default.
- W4317642783 hasConceptScore W4317642783C119599485 @default.
- W4317642783 hasConceptScore W4317642783C119857082 @default.
- W4317642783 hasConceptScore W4317642783C127413603 @default.
- W4317642783 hasConceptScore W4317642783C154945302 @default.
- W4317642783 hasConceptScore W4317642783C165801399 @default.
- W4317642783 hasConceptScore W4317642783C193221554 @default.
- W4317642783 hasConceptScore W4317642783C199360897 @default.
- W4317642783 hasConceptScore W4317642783C2777655017 @default.
- W4317642783 hasConceptScore W4317642783C30542707 @default.
- W4317642783 hasConceptScore W4317642783C41008148 @default.
- W4317642783 hasConceptScore W4317642783C4554734 @default.
- W4317642783 hasConceptScore W4317642783C66322947 @default.
- W4317642783 hasLocation W43176427831 @default.
- W4317642783 hasOpenAccess W4317642783 @default.
- W4317642783 hasPrimaryLocation W43176427831 @default.
- W4317642783 hasRelatedWork W2922457425 @default.
- W4317642783 hasRelatedWork W3014300295 @default.
- W4317642783 hasRelatedWork W3164822677 @default.
- W4317642783 hasRelatedWork W3215138031 @default.
- W4317642783 hasRelatedWork W4223943233 @default.
- W4317642783 hasRelatedWork W4225161397 @default.
- W4317642783 hasRelatedWork W4250304930 @default.
- W4317642783 hasRelatedWork W4289528260 @default.
- W4317642783 hasRelatedWork W4309045103 @default.
- W4317642783 hasRelatedWork W4312200629 @default.
- W4317642783 isParatext "false" @default.
- W4317642783 isRetracted "false" @default.
- W4317642783 workType "article" @default.