Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317702934> ?p ?o ?g. }
- W4317702934 abstract "Abstract Binding affinity prediction largely determines the discovery efficiency of lead compounds in drug discovery. Recently, machine learning (ML)-based approaches have attracted much attention in hopes of enhancing the predictive performance of traditional physics-based approaches. In this study, we evaluated the impact of structural dynamic information on the binding affinity prediction by comparing the models trained on different dimensional descriptors, using three targets (i.e. JAK1, TAF1-BD2 and DDR1) and their corresponding ligands as the examples. Here, 2D descriptors are traditional ECFP4 fingerprints, 3D descriptors are the energy terms of the Smina and NNscore scoring functions and 4D descriptors contain the structural dynamic information derived from the trajectories based on molecular dynamics (MD) simulations. We systematically investigate the MD-refined binding affinity prediction performance of three classical ML algorithms (i.e. RF, SVR and XGB) as well as two common virtual screening methods, namely Glide docking and MM/PBSA. The outcomes of the ML models built using various dimensional descriptors and their combinations reveal that the MD refinement with the optimized protocol can improve the predictive performance on the TAF1-BD2 target with considerable structural flexibility, but not for the less flexible JAK1 and DDR1 targets, when taking docking poses as the initial structure instead of the crystal structures. The results highlight the importance of the initial structures to the final performance of the model through conformational analysis on the three targets with different flexibility." @default.
- W4317702934 created "2023-01-22" @default.
- W4317702934 creator A5001205723 @default.
- W4317702934 creator A5012541451 @default.
- W4317702934 creator A5026749521 @default.
- W4317702934 creator A5028525523 @default.
- W4317702934 creator A5047501656 @default.
- W4317702934 creator A5054987508 @default.
- W4317702934 creator A5056053058 @default.
- W4317702934 creator A5060450271 @default.
- W4317702934 creator A5061654403 @default.
- W4317702934 creator A5066323913 @default.
- W4317702934 creator A5091645862 @default.
- W4317702934 date "2023-01-21" @default.
- W4317702934 modified "2023-10-14" @default.
- W4317702934 title "Can molecular dynamics simulations improve predictions of protein-ligand binding affinity with machine learning?" @default.
- W4317702934 cites W1178456644 @default.
- W4317702934 cites W1500036797 @default.
- W4317702934 cites W1625910593 @default.
- W4317702934 cites W1973785582 @default.
- W4317702934 cites W1985588649 @default.
- W4317702934 cites W1993285168 @default.
- W4317702934 cites W2020735245 @default.
- W4317702934 cites W2027423337 @default.
- W4317702934 cites W2028629022 @default.
- W4317702934 cites W2029024192 @default.
- W4317702934 cites W2031168104 @default.
- W4317702934 cites W2035687084 @default.
- W4317702934 cites W2037535298 @default.
- W4317702934 cites W2052666656 @default.
- W4317702934 cites W2067174909 @default.
- W4317702934 cites W2095719702 @default.
- W4317702934 cites W2112411768 @default.
- W4317702934 cites W2130479394 @default.
- W4317702934 cites W2142868265 @default.
- W4317702934 cites W2146783323 @default.
- W4317702934 cites W2147988069 @default.
- W4317702934 cites W2147993766 @default.
- W4317702934 cites W2151076845 @default.
- W4317702934 cites W2151591509 @default.
- W4317702934 cites W2166765429 @default.
- W4317702934 cites W2222589778 @default.
- W4317702934 cites W2270330859 @default.
- W4317702934 cites W2330799739 @default.
- W4317702934 cites W2332712348 @default.
- W4317702934 cites W2334483166 @default.
- W4317702934 cites W2402625670 @default.
- W4317702934 cites W2404280981 @default.
- W4317702934 cites W2615576800 @default.
- W4317702934 cites W2643648096 @default.
- W4317702934 cites W2784213390 @default.
- W4317702934 cites W2803029512 @default.
- W4317702934 cites W2891791233 @default.
- W4317702934 cites W2928555364 @default.
- W4317702934 cites W2952072077 @default.
- W4317702934 cites W2954094311 @default.
- W4317702934 cites W2955939175 @default.
- W4317702934 cites W2955986556 @default.
- W4317702934 cites W2968876990 @default.
- W4317702934 cites W3002058234 @default.
- W4317702934 cites W3013330736 @default.
- W4317702934 cites W3039711511 @default.
- W4317702934 cites W3080969562 @default.
- W4317702934 cites W3097145107 @default.
- W4317702934 cites W3102476541 @default.
- W4317702934 cites W3133931590 @default.
- W4317702934 cites W3135935512 @default.
- W4317702934 cites W3155806981 @default.
- W4317702934 cites W3156540022 @default.
- W4317702934 cites W3160704433 @default.
- W4317702934 cites W3160741489 @default.
- W4317702934 cites W3175121349 @default.
- W4317702934 cites W3192540610 @default.
- W4317702934 cites W3214851358 @default.
- W4317702934 cites W4200139236 @default.
- W4317702934 cites W4289518623 @default.
- W4317702934 doi "https://doi.org/10.1093/bib/bbad008" @default.
- W4317702934 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36681903" @default.
- W4317702934 hasPublicationYear "2023" @default.
- W4317702934 type Work @default.
- W4317702934 citedByCount "3" @default.
- W4317702934 countsByYear W43177029342023 @default.
- W4317702934 crossrefType "journal-article" @default.
- W4317702934 hasAuthorship W4317702934A5001205723 @default.
- W4317702934 hasAuthorship W4317702934A5012541451 @default.
- W4317702934 hasAuthorship W4317702934A5026749521 @default.
- W4317702934 hasAuthorship W4317702934A5028525523 @default.
- W4317702934 hasAuthorship W4317702934A5047501656 @default.
- W4317702934 hasAuthorship W4317702934A5054987508 @default.
- W4317702934 hasAuthorship W4317702934A5056053058 @default.
- W4317702934 hasAuthorship W4317702934A5060450271 @default.
- W4317702934 hasAuthorship W4317702934A5061654403 @default.
- W4317702934 hasAuthorship W4317702934A5066323913 @default.
- W4317702934 hasAuthorship W4317702934A5091645862 @default.
- W4317702934 hasConcept C101544691 @default.
- W4317702934 hasConcept C103697762 @default.
- W4317702934 hasConcept C105795698 @default.
- W4317702934 hasConcept C119857082 @default.
- W4317702934 hasConcept C147597530 @default.
- W4317702934 hasConcept C152681006 @default.