Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317734501> ?p ?o ?g. }
- W4317734501 endingPage "1054" @default.
- W4317734501 startingPage "1010" @default.
- W4317734501 abstract "Accuracy is a key focus of current work in time series classification. However, speed and data reduction are equally important in many applications, especially when the data scale and storage requirements rapidly increase. Current multivariate time series classification (MTSC) algorithms need hundreds of compute hours to complete training and prediction. This is due to the nature of multivariate time series data which grows with the number of time series, their length and the number of channels. In many applications, not all the channels are useful for the classification task, hence we require methods that can efficiently select useful channels and thus save computational resources. We propose and evaluate two methods for channel selection. Our techniques work by representing each class by a prototype time series and performing channel selection based on the prototype distance between classes. The main hypothesis is that useful channels enable better separation between classes; hence, channels with a larger distance between class prototypes are more useful. On the UEA MTSC benchmark, we show that these techniques achieve significant data reduction and classifier speedup for similar levels of classification accuracy. Channel selection is applied as a pre-processing step before training state-of-the-art MTSC algorithms and saves about 70% of computation time and data storage with preserved accuracy. Furthermore, our methods enable efficient classifiers, such as ROCKET, to achieve better accuracy than using no selection or greedy forward channel selection. To further study the impact of our techniques, we present experiments on classifying synthetic multivariate time series datasets with more than 100 channels, as well as a real-world case study on a dataset with 50 channels. In both cases, our channel selection methods result in significant data reduction with preserved or improved accuracy." @default.
- W4317734501 created "2023-01-23" @default.
- W4317734501 creator A5010565726 @default.
- W4317734501 creator A5040176369 @default.
- W4317734501 creator A5054845773 @default.
- W4317734501 date "2023-01-23" @default.
- W4317734501 modified "2023-09-30" @default.
- W4317734501 title "Scalable classifier-agnostic channel selection for multivariate time series classification" @default.
- W4317734501 cites W1619226191 @default.
- W4317734501 cites W1967873618 @default.
- W4317734501 cites W1981456624 @default.
- W4317734501 cites W2016331699 @default.
- W4317734501 cites W2016944175 @default.
- W4317734501 cites W2040975718 @default.
- W4317734501 cites W2101591109 @default.
- W4317734501 cites W2153685828 @default.
- W4317734501 cites W2164274563 @default.
- W4317734501 cites W2555077524 @default.
- W4317734501 cites W2594788739 @default.
- W4317734501 cites W2773460030 @default.
- W4317734501 cites W2798970646 @default.
- W4317734501 cites W2946507061 @default.
- W4317734501 cites W3042807565 @default.
- W4317734501 cites W3086888808 @default.
- W4317734501 cites W3098918569 @default.
- W4317734501 cites W3132154052 @default.
- W4317734501 cites W3152879062 @default.
- W4317734501 cites W3200389295 @default.
- W4317734501 cites W4200269548 @default.
- W4317734501 cites W4206640812 @default.
- W4317734501 cites W4285286621 @default.
- W4317734501 cites W4289360400 @default.
- W4317734501 doi "https://doi.org/10.1007/s10618-022-00909-1" @default.
- W4317734501 hasPublicationYear "2023" @default.
- W4317734501 type Work @default.
- W4317734501 citedByCount "1" @default.
- W4317734501 countsByYear W43177345012023 @default.
- W4317734501 crossrefType "journal-article" @default.
- W4317734501 hasAuthorship W4317734501A5010565726 @default.
- W4317734501 hasAuthorship W4317734501A5040176369 @default.
- W4317734501 hasAuthorship W4317734501A5054845773 @default.
- W4317734501 hasBestOaLocation W43177345012 @default.
- W4317734501 hasConcept C111919701 @default.
- W4317734501 hasConcept C119857082 @default.
- W4317734501 hasConcept C124101348 @default.
- W4317734501 hasConcept C127162648 @default.
- W4317734501 hasConcept C13280743 @default.
- W4317734501 hasConcept C148483581 @default.
- W4317734501 hasConcept C151406439 @default.
- W4317734501 hasConcept C153180895 @default.
- W4317734501 hasConcept C154945302 @default.
- W4317734501 hasConcept C161584116 @default.
- W4317734501 hasConcept C185798385 @default.
- W4317734501 hasConcept C205649164 @default.
- W4317734501 hasConcept C31258907 @default.
- W4317734501 hasConcept C41008148 @default.
- W4317734501 hasConcept C48044578 @default.
- W4317734501 hasConcept C68339613 @default.
- W4317734501 hasConcept C77088390 @default.
- W4317734501 hasConcept C81917197 @default.
- W4317734501 hasConcept C95623464 @default.
- W4317734501 hasConceptScore W4317734501C111919701 @default.
- W4317734501 hasConceptScore W4317734501C119857082 @default.
- W4317734501 hasConceptScore W4317734501C124101348 @default.
- W4317734501 hasConceptScore W4317734501C127162648 @default.
- W4317734501 hasConceptScore W4317734501C13280743 @default.
- W4317734501 hasConceptScore W4317734501C148483581 @default.
- W4317734501 hasConceptScore W4317734501C151406439 @default.
- W4317734501 hasConceptScore W4317734501C153180895 @default.
- W4317734501 hasConceptScore W4317734501C154945302 @default.
- W4317734501 hasConceptScore W4317734501C161584116 @default.
- W4317734501 hasConceptScore W4317734501C185798385 @default.
- W4317734501 hasConceptScore W4317734501C205649164 @default.
- W4317734501 hasConceptScore W4317734501C31258907 @default.
- W4317734501 hasConceptScore W4317734501C41008148 @default.
- W4317734501 hasConceptScore W4317734501C48044578 @default.
- W4317734501 hasConceptScore W4317734501C68339613 @default.
- W4317734501 hasConceptScore W4317734501C77088390 @default.
- W4317734501 hasConceptScore W4317734501C81917197 @default.
- W4317734501 hasConceptScore W4317734501C95623464 @default.
- W4317734501 hasFunder F4320320847 @default.
- W4317734501 hasIssue "2" @default.
- W4317734501 hasLocation W43177345011 @default.
- W4317734501 hasLocation W43177345012 @default.
- W4317734501 hasOpenAccess W4317734501 @default.
- W4317734501 hasPrimaryLocation W43177345011 @default.
- W4317734501 hasRelatedWork W112744582 @default.
- W4317734501 hasRelatedWork W1800827217 @default.
- W4317734501 hasRelatedWork W2563096758 @default.
- W4317734501 hasRelatedWork W3082137346 @default.
- W4317734501 hasRelatedWork W3200179079 @default.
- W4317734501 hasRelatedWork W4213121036 @default.
- W4317734501 hasRelatedWork W4293525103 @default.
- W4317734501 hasRelatedWork W4386053843 @default.
- W4317734501 hasRelatedWork W2345184372 @default.
- W4317734501 hasRelatedWork W3158004940 @default.
- W4317734501 hasVolume "37" @default.
- W4317734501 isParatext "false" @default.