Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317734512> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4317734512 endingPage "1435" @default.
- W4317734512 startingPage "1435" @default.
- W4317734512 abstract "The pothole is a common road defect that seriously affects traffic efficiency and personal safety. Road evaluation and maintenance and automatic driving take pothole detection as their main research part. In the above scenarios, accuracy and real-time pothole detection are the most important. However, the current pothole detection methods can not meet the accuracy and real-time requirements of pothole detection due to their multiple parameters and volume. To solve these problems, we first propose a lightweight one-stage object detection network, the AAL-Net. In the network, we design an LF (lightweight feature extraction) module and use the NAM (Normalization-based Attention Module) attention module to ensure the accuracy and real time of the pothole detection process. Secondly, we make our own pothole dataset for pothole detection. Finally, in order to simulate the real road scene, we design a data augmentation method to further improve the detection accuracy and robustness of the AAL-Net. The metrics F1 and GFLOPs show that our method is better than other deep learning models in the self-made dataset and the pothole600 dataset and can well meet the accuracy and real-time requirements of pothole detection." @default.
- W4317734512 created "2023-01-23" @default.
- W4317734512 creator A5009424884 @default.
- W4317734512 creator A5024839815 @default.
- W4317734512 creator A5032089035 @default.
- W4317734512 creator A5056862464 @default.
- W4317734512 creator A5064879510 @default.
- W4317734512 creator A5066041146 @default.
- W4317734512 creator A5076998721 @default.
- W4317734512 date "2023-01-21" @default.
- W4317734512 modified "2023-10-06" @default.
- W4317734512 title "AAL-Net: A Lightweight Detection Method for Road Surface Defects Based on Attention and Data Augmentation" @default.
- W4317734512 cites W2102605133 @default.
- W4317734512 cites W2194775991 @default.
- W4317734512 cites W2565639579 @default.
- W4317734512 cites W2570343428 @default.
- W4317734512 cites W2752782242 @default.
- W4317734512 cites W2883780447 @default.
- W4317734512 cites W2884585870 @default.
- W4317734512 cites W2891534395 @default.
- W4317734512 cites W2898061234 @default.
- W4317734512 cites W2900760155 @default.
- W4317734512 cites W2911287448 @default.
- W4317734512 cites W2963037989 @default.
- W4317734512 cites W2963125010 @default.
- W4317734512 cites W2963163009 @default.
- W4317734512 cites W2963351448 @default.
- W4317734512 cites W2963857746 @default.
- W4317734512 cites W2979872609 @default.
- W4317734512 cites W2982083293 @default.
- W4317734512 cites W2988296394 @default.
- W4317734512 cites W3000602481 @default.
- W4317734512 cites W3006380048 @default.
- W4317734512 cites W3034552520 @default.
- W4317734512 cites W3034971973 @default.
- W4317734512 cites W3035414587 @default.
- W4317734512 cites W3042011474 @default.
- W4317734512 cites W3088936717 @default.
- W4317734512 cites W3099452838 @default.
- W4317734512 cites W3106250896 @default.
- W4317734512 cites W3116345469 @default.
- W4317734512 cites W3163559940 @default.
- W4317734512 cites W3175064897 @default.
- W4317734512 cites W3176531424 @default.
- W4317734512 cites W3215829569 @default.
- W4317734512 cites W4214727094 @default.
- W4317734512 cites W4281480072 @default.
- W4317734512 cites W4282970237 @default.
- W4317734512 cites W4304128229 @default.
- W4317734512 cites W4307250459 @default.
- W4317734512 cites W639708223 @default.
- W4317734512 doi "https://doi.org/10.3390/app13031435" @default.
- W4317734512 hasPublicationYear "2023" @default.
- W4317734512 type Work @default.
- W4317734512 citedByCount "0" @default.
- W4317734512 crossrefType "journal-article" @default.
- W4317734512 hasAuthorship W4317734512A5009424884 @default.
- W4317734512 hasAuthorship W4317734512A5024839815 @default.
- W4317734512 hasAuthorship W4317734512A5032089035 @default.
- W4317734512 hasAuthorship W4317734512A5056862464 @default.
- W4317734512 hasAuthorship W4317734512A5064879510 @default.
- W4317734512 hasAuthorship W4317734512A5066041146 @default.
- W4317734512 hasAuthorship W4317734512A5076998721 @default.
- W4317734512 hasBestOaLocation W43177345121 @default.
- W4317734512 hasConcept C127313418 @default.
- W4317734512 hasConcept C154945302 @default.
- W4317734512 hasConcept C2776023743 @default.
- W4317734512 hasConcept C41008148 @default.
- W4317734512 hasConcept C5900021 @default.
- W4317734512 hasConceptScore W4317734512C127313418 @default.
- W4317734512 hasConceptScore W4317734512C154945302 @default.
- W4317734512 hasConceptScore W4317734512C2776023743 @default.
- W4317734512 hasConceptScore W4317734512C41008148 @default.
- W4317734512 hasConceptScore W4317734512C5900021 @default.
- W4317734512 hasIssue "3" @default.
- W4317734512 hasLocation W43177345121 @default.
- W4317734512 hasLocation W43177345122 @default.
- W4317734512 hasOpenAccess W4317734512 @default.
- W4317734512 hasPrimaryLocation W43177345121 @default.
- W4317734512 hasRelatedWork W2185993565 @default.
- W4317734512 hasRelatedWork W2383269480 @default.
- W4317734512 hasRelatedWork W2592426749 @default.
- W4317734512 hasRelatedWork W2748952813 @default.
- W4317734512 hasRelatedWork W278943861 @default.
- W4317734512 hasRelatedWork W2899084033 @default.
- W4317734512 hasRelatedWork W3118927687 @default.
- W4317734512 hasRelatedWork W3175064897 @default.
- W4317734512 hasRelatedWork W4312659957 @default.
- W4317734512 hasRelatedWork W640636360 @default.
- W4317734512 hasVolume "13" @default.
- W4317734512 isParatext "false" @default.
- W4317734512 isRetracted "false" @default.
- W4317734512 workType "article" @default.