Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317738314> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4317738314 endingPage "194" @default.
- W4317738314 startingPage "182" @default.
- W4317738314 abstract "Changes in eye movements have a strong relationship with the changes in the brain. Several medical studies have revealed that in most CNS disorders, ocular manifestations are often associated with brain symptoms. To date, computational intelligence has not been used to study the relationship between eye movements and brain disorders. We propose a support vector machine (SVM) based machine learning solution to identify, five disorders related to the central nervous system; Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), and Alzheimer’s Disease (AD), Parkinson’s Disease (PD), and Schizophrenia. Apart from the SVM, the proposed solution handles two major problems which occur in the data preprocessing stage; insufficiency of real eye test data and finding optimal features set for a particular disorder. An algorithm is developed to generate synthetic data and to find the optimal features set for a particular disorder, a solution based on particle swarm optimization is proposed. We trained the SVM models using the generated synthetic data and tested with the real data. The proposed system based on SVMs with linear, polynomial, and RBF kernels were able to identify the stages of the disorders, as diagnosed in medical studies. The SVM with the RBF kernel worked with an accuracy of 97% in identifying the existence of a CNS disorder. In classifying the stages of ALS, the linear kernel worked with an accuracy of 77% while the polynomial kernel worked with an accuracy of 100%, 90%, and 64% in classifying stages of MS, AD, and Schizophrenia. For PD, SVMs with all kernels gave an accuracy of 96%. The results are encouraging, giving sufficient evidence that the proposed system works better. We further illustrate the viability of our method by comparing the results with those obtained in previous medical studies." @default.
- W4317738314 created "2023-01-23" @default.
- W4317738314 creator A5050075655 @default.
- W4317738314 creator A5062203691 @default.
- W4317738314 date "2023-01-01" @default.
- W4317738314 modified "2023-09-26" @default.
- W4317738314 title "An Expert System to Detect and Classify CNS Disorders Based on Eye Test Data Using SVM and Nature-Inspired Algorithms" @default.
- W4317738314 cites W1522143886 @default.
- W4317738314 cites W1969548085 @default.
- W4317738314 cites W1991934654 @default.
- W4317738314 cites W2025516994 @default.
- W4317738314 cites W2133686994 @default.
- W4317738314 cites W2306862514 @default.
- W4317738314 cites W2508948606 @default.
- W4317738314 cites W2752203326 @default.
- W4317738314 cites W2758776662 @default.
- W4317738314 cites W2801270536 @default.
- W4317738314 cites W2967433988 @default.
- W4317738314 cites W2987988540 @default.
- W4317738314 cites W3040581339 @default.
- W4317738314 cites W3128792537 @default.
- W4317738314 cites W4239510810 @default.
- W4317738314 cites W4250503569 @default.
- W4317738314 doi "https://doi.org/10.1007/978-3-031-23480-4_15" @default.
- W4317738314 hasPublicationYear "2023" @default.
- W4317738314 type Work @default.
- W4317738314 citedByCount "0" @default.
- W4317738314 crossrefType "book-chapter" @default.
- W4317738314 hasAuthorship W4317738314A5050075655 @default.
- W4317738314 hasAuthorship W4317738314A5062203691 @default.
- W4317738314 hasConcept C11413529 @default.
- W4317738314 hasConcept C114614502 @default.
- W4317738314 hasConcept C119857082 @default.
- W4317738314 hasConcept C122280245 @default.
- W4317738314 hasConcept C12267149 @default.
- W4317738314 hasConcept C153180895 @default.
- W4317738314 hasConcept C154945302 @default.
- W4317738314 hasConcept C160446489 @default.
- W4317738314 hasConcept C169903167 @default.
- W4317738314 hasConcept C177264268 @default.
- W4317738314 hasConcept C199360897 @default.
- W4317738314 hasConcept C33923547 @default.
- W4317738314 hasConcept C34736171 @default.
- W4317738314 hasConcept C41008148 @default.
- W4317738314 hasConcept C58489278 @default.
- W4317738314 hasConcept C74193536 @default.
- W4317738314 hasConceptScore W4317738314C11413529 @default.
- W4317738314 hasConceptScore W4317738314C114614502 @default.
- W4317738314 hasConceptScore W4317738314C119857082 @default.
- W4317738314 hasConceptScore W4317738314C122280245 @default.
- W4317738314 hasConceptScore W4317738314C12267149 @default.
- W4317738314 hasConceptScore W4317738314C153180895 @default.
- W4317738314 hasConceptScore W4317738314C154945302 @default.
- W4317738314 hasConceptScore W4317738314C160446489 @default.
- W4317738314 hasConceptScore W4317738314C169903167 @default.
- W4317738314 hasConceptScore W4317738314C177264268 @default.
- W4317738314 hasConceptScore W4317738314C199360897 @default.
- W4317738314 hasConceptScore W4317738314C33923547 @default.
- W4317738314 hasConceptScore W4317738314C34736171 @default.
- W4317738314 hasConceptScore W4317738314C41008148 @default.
- W4317738314 hasConceptScore W4317738314C58489278 @default.
- W4317738314 hasConceptScore W4317738314C74193536 @default.
- W4317738314 hasLocation W43177383141 @default.
- W4317738314 hasOpenAccess W4317738314 @default.
- W4317738314 hasPrimaryLocation W43177383141 @default.
- W4317738314 hasRelatedWork W2066259560 @default.
- W4317738314 hasRelatedWork W2091737176 @default.
- W4317738314 hasRelatedWork W2123376283 @default.
- W4317738314 hasRelatedWork W2126100045 @default.
- W4317738314 hasRelatedWork W2136184105 @default.
- W4317738314 hasRelatedWork W2141705618 @default.
- W4317738314 hasRelatedWork W2146785254 @default.
- W4317738314 hasRelatedWork W2348964713 @default.
- W4317738314 hasRelatedWork W2384238806 @default.
- W4317738314 hasRelatedWork W3162160273 @default.
- W4317738314 isParatext "false" @default.
- W4317738314 isRetracted "false" @default.
- W4317738314 workType "book-chapter" @default.