Matches in SemOpenAlex for { <https://semopenalex.org/work/W4317752012> ?p ?o ?g. }
- W4317752012 abstract "Staphylococcus aureus is a clinically important bacterial pathogen that has become resistant to treatment with most routinely used antibiotics. Alternative strategies, such as vaccination and phage therapy, are therefore actively being investigated to prevent or combat staphylococcal infections. Vaccination requires that vaccine targets are expressed at sufficient quantities during infection so that they can be targeted by the host's immune system. While our knowledge of in vitro expression levels of putative vaccine candidates is comprehensive, crucial in vivo expression data are scarce and promising vaccine candidates during in vitro assessment often prove ineffective in preventing S. aureus infection. Here, we show how a newly developed high-throughput quantitative reverse transcription-PCR (qRT-PCR) assay monitoring the expression of 84 staphylococcal genes encoding mostly virulence factors can inform the selection and design of effective vaccine candidates against staphylococcal infections. We show that this assay can accurately quantify mRNA expression levels of these genes in several host organs relying only on very limited amounts of bacterial mRNA in each sample. We selected two highly expressed genes, lukE and lukD, encoding pore-forming leukotoxins, to inform the design of detoxified recombinant proteins and showed that immunization with recombinant genetically detoxified LukED antigens conferred protection against staphylococcal skin infection in mice. Consequently, knowledge of in vivo-expressed virulence determinants can be successfully deployed to identify and select promising candidates for optimized design of effective vaccine antigens against S. aureus. Notably, this approach should be broadly applicable to numerous other pathogens. IMPORTANCE Vaccination is an attractive strategy for preventing bacterial infections in an age of increased antimicrobial resistance. However, vaccine development frequently suffers significant setbacks when candidate antigens that show promising results in in vitro experimentation fail to protect from disease. An alluring strategy is to focus resources on developing bacterial virulence factors that are expressed during disease establishment or maintenance and are critical for bacterial in-host survival as vaccine targets. While expression profiles of many virulence factors have been characterized in detail in vitro, our knowledge of their in vivo expression profiles is still scarce. Here, using a high-throughput qRT-PCR approach, we identified two highly expressed leukotoxins in a murine infection model and showed that genetically detoxified derivatives of these elicited a protective immune response in a murine skin infection model. Therefore, in vivo gene expression can inform the selection of promising candidates for the design of effective vaccine antigens." @default.
- W4317752012 created "2023-01-23" @default.
- W4317752012 creator A5013061069 @default.
- W4317752012 creator A5017155655 @default.
- W4317752012 creator A5017976977 @default.
- W4317752012 creator A5020338727 @default.
- W4317752012 creator A5026986865 @default.
- W4317752012 creator A5048416724 @default.
- W4317752012 creator A5049955756 @default.
- W4317752012 creator A5070609437 @default.
- W4317752012 date "2023-02-14" @default.
- W4317752012 modified "2023-09-26" @default.
- W4317752012 title "<i>In Vivo</i> Gene Expression Profiling of Staphylococcus aureus during Infection Informs Design of Stemless Leukocidins LukE and -D as Detoxified Vaccine Candidates" @default.
- W4317752012 cites W1543376881 @default.
- W4317752012 cites W1766248098 @default.
- W4317752012 cites W1893769864 @default.
- W4317752012 cites W1941322164 @default.
- W4317752012 cites W1965495205 @default.
- W4317752012 cites W1969544545 @default.
- W4317752012 cites W1973675012 @default.
- W4317752012 cites W1975256163 @default.
- W4317752012 cites W1976196422 @default.
- W4317752012 cites W1981565756 @default.
- W4317752012 cites W1982944795 @default.
- W4317752012 cites W1983302027 @default.
- W4317752012 cites W1985776518 @default.
- W4317752012 cites W1985865348 @default.
- W4317752012 cites W1994852088 @default.
- W4317752012 cites W1996486159 @default.
- W4317752012 cites W2008594900 @default.
- W4317752012 cites W2014819397 @default.
- W4317752012 cites W2025746544 @default.
- W4317752012 cites W2027912106 @default.
- W4317752012 cites W2031195396 @default.
- W4317752012 cites W2037679972 @default.
- W4317752012 cites W2044678473 @default.
- W4317752012 cites W2048580389 @default.
- W4317752012 cites W2052831663 @default.
- W4317752012 cites W2057387605 @default.
- W4317752012 cites W2068821558 @default.
- W4317752012 cites W2088137635 @default.
- W4317752012 cites W2101940366 @default.
- W4317752012 cites W2103056313 @default.
- W4317752012 cites W2115127793 @default.
- W4317752012 cites W2117622689 @default.
- W4317752012 cites W2121049053 @default.
- W4317752012 cites W2121348586 @default.
- W4317752012 cites W2121452572 @default.
- W4317752012 cites W2124904530 @default.
- W4317752012 cites W2132145187 @default.
- W4317752012 cites W2135403526 @default.
- W4317752012 cites W2149169853 @default.
- W4317752012 cites W2152878746 @default.
- W4317752012 cites W2162846954 @default.
- W4317752012 cites W2166227322 @default.
- W4317752012 cites W2168516112 @default.
- W4317752012 cites W2174397627 @default.
- W4317752012 cites W2201809605 @default.
- W4317752012 cites W2218183054 @default.
- W4317752012 cites W2227344830 @default.
- W4317752012 cites W2263759014 @default.
- W4317752012 cites W2300793209 @default.
- W4317752012 cites W2337358070 @default.
- W4317752012 cites W2346722837 @default.
- W4317752012 cites W2466306576 @default.
- W4317752012 cites W2504133093 @default.
- W4317752012 cites W2522998153 @default.
- W4317752012 cites W2584724134 @default.
- W4317752012 cites W2587786964 @default.
- W4317752012 cites W2600134345 @default.
- W4317752012 cites W2606019469 @default.
- W4317752012 cites W2607187374 @default.
- W4317752012 cites W2744713344 @default.
- W4317752012 cites W2767160926 @default.
- W4317752012 cites W2883420974 @default.
- W4317752012 cites W2904123526 @default.
- W4317752012 cites W2907641591 @default.
- W4317752012 cites W2909016430 @default.
- W4317752012 cites W2912673401 @default.
- W4317752012 cites W2915202693 @default.
- W4317752012 cites W2915215930 @default.
- W4317752012 cites W2926414609 @default.
- W4317752012 cites W2926953440 @default.
- W4317752012 cites W2944500708 @default.
- W4317752012 cites W2945436824 @default.
- W4317752012 cites W3011041389 @default.
- W4317752012 cites W3039062686 @default.
- W4317752012 cites W3073592143 @default.
- W4317752012 cites W3094981707 @default.
- W4317752012 cites W3105582190 @default.
- W4317752012 cites W3112743590 @default.
- W4317752012 cites W3126393518 @default.
- W4317752012 cites W3167983958 @default.
- W4317752012 cites W3181962458 @default.
- W4317752012 cites W4206677002 @default.
- W4317752012 cites W4281683189 @default.
- W4317752012 cites W4283587040 @default.
- W4317752012 cites W4309503005 @default.
- W4317752012 cites W61536043 @default.
- W4317752012 doi "https://doi.org/10.1128/spectrum.02574-22" @default.